
Automated Reasoning For Uncertain Markov Processes

by

Muhammad Maaz

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Department of Mechanical and Industrial Engineering
University of Toronto

© Copyright 2025 by Muhammad Maaz

Automated Reasoning For Uncertain Markov Processes

Muhammad Maaz
Doctor of Philosophy

Department of Mechanical and Industrial Engineering
University of Toronto

2025

Abstract

Markov processes are a ubiquitous modeling tool used to model a variety of probabilistic phenomena

across a range of disciplines. In this thesis, we develop algorithms for studying Markov processes

using tools from the field of automated reasoning.

First, we tackle a variant of sensitivity analysis, where we want to obtain all possible parameters

for a Markov process such that the total reward achieves a fixed threshold. The set of such parameters

forms a semialgebraic set, and so we use cylindrical algebraic decomposition, an algorithm developed

for the existential theory of the reals, to describe this set. By exploiting properties of our polynomial

system, we develop a variant that runs in singly exponential time, instead of the doubly exponential

complexity in the general case.

Next, we study properties of Markov processes where the parameters are functions, given as

machine learning models, of exogenous variables. Using ideas from formal verification of machine

learning models and probabilistic model checking, we show how to obtain guaranteed bounds on the

behavior of such processes. For a wide selection of machine learning models, we show that obtaining

such guarantees is equivalent to solving a bilinear program, which are classically NP-hard problems.

We develop a special decomposition algorithm that solves the bilinear program orders-of-magnitude

faster than state-of-the-art solvers.

Our algorithmic developments are implemented in two software packages: markovag, which im-

plements our variant of cylindrical algebraic decomposition; and markovml, which provides a domain-

specific language for constructing Markov processes, embedding pretrained machine learning models,

and then solving the resulting bilinear program with our decomposition scheme.

Lastly, we perform a comprehensive cost-effectiveness analysis using data from nearly 25,000

real cardiac arrests in Ontario, Canada. Using drones to deliver defibrillators to the site of cardiac

arrests has been trialled, but a cost-effectiveness analysis has been lacking. Our detailed analysis

shows that drones are a cost-effective solution, and our findings are robust to modeling assumptions.

The richness of this analysis makes it a fertile case study for our novel algorithms, and we show how

our techniques provide deeper insights than usual cost-effectiveness methods.

ii

To my mom and dad, who raised me to be curious.

iii

Acknowledgements

First and foremost, I thank my supervisor, Timothy Chan. It is not an overstatement to say that

Tim changed my life. Tim took a chance on me as a PhD student despite coming from a non-

traditional background. He gave me the space to explore risky ideas, trusted me with intellectual

freedom and wide latitude in research directions. He has always been extremely available to discuss

research or other professional concerns. I am also indebted to him for funding my many conference

travels during my PhD.

The ideas in this thesis would not have been possible without the support of my committee.

Thank you to Xujie Si, whose automated reasoning class I took on a whim but ended up changing

the course of my research career, leading to this very thesis. Thank you to Eldan Cohen, whose

broad knowledge always led to incisive questions during our meetings. I would not have pursued

a PhD without the support of my undergraduate research supervisor, Anastasios Papanastasiou,

who first showed me the wonderful world of research. I am grateful to the Natural Sciences and

Engineering Research Council of Canada for their generosity in awarding me a Vanier Scholarship,

which allowed me to fully focus on doing good research.

Next, I thank my dear friends for their support during my PhD. Thanks especially to Aahil

Dayani, with whom watching movies was always a welcome respite; Talha Tahir, who would always

support my eccentric life plans without judgment; Roshan Naufal, who would entertain me despite

being thousands of kilometers away; Baljit Sohi, who has an endless dedication to finding third

spaces; Madhu Gunasingam, with whom I’d talk about math until 3am at our local shawarma

spot; Niloy Anjum, who kept me grounded with our Friday night weightlifting sessions; Mathepan

Mahendralingam, who was always available for any sort of advice; and Navid Khan, who was always

willing to go on a late night drive. There are several dozen other people whose support and friendship

over the last few years kept me sane, among them, in no order, Ali Butt, Christopher Yao, Amar

Camlasaran, Fahaam Tashfeen, Melanie Wong, and Fuad Ali.

The Applied Optimization Lab was a great place for my intellectual growth these last few years.

I would like to especially thank Bo Lin, who was a wonderful mentor to me; Jesse Ward-Bond,

whose organizational skills I wish I could emulate; Vinicius Jameli, who was always an injection of

positivity; as well as Rachel Wong, Craig Fernandes, and everyone else.

I spent 6 incredible months during my PhD at the Massachusetts Institute of Technology, and

I thank Dimitris Bertsimas for hosting me. I’ll always fondly remember my time there. Thanks

to Jennifer Lin, whom I would have the most interesting conversations with for endless hours, and

whom I’m counting on to become a billionaire; Salman Hasib, a truly unexpected and wise friend;

and, my cousin Najaf Khan and her husband Ali Zaidi, who made Boston feel like home.

This thesis is, of course, dedicated to my parents, but I am also grateful to my brother, Moeez

Muhammad, for our valuable intellectual discussions; my cousin Zeshan Khan, who pushed me to

be more ambitious; and the rest of my extended family.

Lock yourself in a room

Doing five beats a day for three summers

— Kanye West

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of Contributions . 3

1.3 Thesis Organization . 4

1.4 Related Work . 4

1.4.1 Uncertainty in Markov Processes . 4

1.4.2 Cost-Effectiveness Analysis . 5

1.5 Mathematical Setup . 5

2 Exact Sensitivity Analysis of Markov Reward Processes 7

2.1 Introduction . 7

2.2 Related Work . 8

2.2.1 Cylindrical Algebraic Decomposition . 9

2.3 Semialgebraic Representations of Markov Reward Processes 9

2.4 Cylindrical Algebraic Decomposition . 12

2.4.1 Background on Hong Projection Operator . 13

2.4.2 Technical Lemmas About Reducta and Principal Subresultant Coefficients . . 16

2.4.3 The CAD Algorithm . 17

2.4.4 A Special Class of Polynomial System . 21

2.5 Application to Markov Reward Processes . 32

2.5.1 Geometry of Two-Way Sensitivity Analysis 33

2.6 Software: markovag . 35

2.6.1 Synthetic Case Study . 35

2.7 Conclusion . 37

3 Formal Verification of Markov Processes with Learned Parameters 38

3.1 Introduction . 38

3.2 Related Work . 39

3.3 Problem Formulation . 40

3.3.1 Embedding ML Models . 40

3.4 Solving the Optimization Problem . 43

3.4.1 Tightening Bounds on v . 44

3.4.2 Solving the Final Optimization Problem . 46

3.5 Extensions . 47

v

3.5.1 Reachability, Hitting time, and Feasibility . 47

3.5.2 Special Cases . 53

3.6 Software: markovml . 53

3.6.1 Supported Models . 54

3.6.2 Using markovml . 54

3.7 Numerical Experiments . 57

3.7.1 Setup . 57

3.7.2 Results . 59

3.8 Discussion and Conclusion . 60

4 Cost-Effectiveness of Drone-Delivered Automated External Defibrillators for Car-

diac Arrest 61

4.1 Introduction . 61

4.2 Summary of Methods . 62

4.2.1 Data Source and Study Setting . 62

4.2.2 Study Population . 62

4.2.3 Drone Network Optimization . 62

4.2.4 Drone Specifications . 62

4.2.5 Decision Model . 63

4.2.6 Outcomes . 64

4.2.7 Subgroup and Sensitivity analyses . 64

4.3 Detailed Methods . 67

4.3.1 Data Summary and Processing . 67

4.3.2 Drone Networks . 68

4.3.3 Prediction Models . 68

4.3.4 Cost-Effectiveness Model Parameters . 70

4.4 Results . 73

4.4.1 Subgroup Analyses . 74

4.4.2 Sensitivity Analysis . 75

4.5 Discussion of Main Results . 78

4.6 Re-Analysis with our Algorithms . 79

4.6.1 Sensitivity Analysis . 79

4.6.2 Subgroup Analysis . 81

4.7 Conclusion . 82

5 Conclusion 83

A Supplementary Material from Chapter 4 97

A.1 Supplementary Tables . 97

A.2 Supplementary Figures . 103

vi

Chapter 1

Introduction

1.1 Motivation

Markov processes, which model probabilistic transitions between states, are fundamental mathemat-

ical models used across operations research, computer science, engineering, and healthcare [Stewart,

2021]. In computer science, they capture the behavior of probabilistic systems such as hardware,

communication protocols, or autonomous agents [Baier and Katoen, 2008]. In engineering, they are

used to analyze degradation and failure in complex machinery [Rausand and Hoyland, 2003]. In

healthcare, they model patient transitions between clinical states and underpin cost-effectiveness

analyses (CEA) of medical interventions [Sonnenberg and Beck, 1993].

This thesis is most particularly inspired by the use of Markov processes in health economics

[Rudmik and Drummond, 2013]. A new medical intervention would be evaluated based on how it

alters the primitives of the Markov reward process. For example, a promising intervention might

lower the transition probability to worse health states or increase rewards associated with quality of

life in healthier states. After calculating lifetime benefits and costs using the model, a policymaker

may be interested in whether the total reward associated with the intervention exceeds a given

threshold, or whether the reward of one intervention exceeds that of an alternative. Other metrics

of interest in a CEA may include the net monetary benefit (benefit multiplied by willingness-to-pay

per unit benefit minus cost) or the incremental cost-effectiveness ratio (difference in costs of two

interventions divided by their difference in benefits).

The classic study of Markov processes (which we will sometimes, loosely, also refer to as Markov

chains or Markov models) assumes that all parameters are known exactly. This setting has been

deeply studied, and their properties can be found in standard textbooks, e.g., Puterman [2014] or

Rosenthal [2019]. However, when they are used to model the real-world, several difficulties arise.

Most real-world systems do not have known parameters. There may be significant variability that

can be modeled in various ways: e.g., parameters may lie in intervals, or some more complicated set,

be drawn from a probability distribution, or be given by a function of exogenous variables which

themselves lie in some set. For example, in the healthcare context, the transition probabilities may

be taken from empirical data, which has inherent uncertainty, or be a function of the patients’

characteristics.

Under such uncertainty, we would ideally like to obtain some rigorous guarantees of the behavior

1

CHAPTER 1. INTRODUCTION 2

of these Markov models. This can be analyzed through the lens of automated reasoning. Automated

reasoning is a broad field of computer science that aims to provide mathematical proofs, derived by

computers, about the behavior of a program or a system [Portoraro, 2025]. It is used in practice

to ensure necessary properties of hardware and software alike, which is called formal verification.

In recent times, formal verification has even been applied to machine learning models. Automated

reasoning spans several different subdomains: it includes symbolic manipulation such as with com-

puter algebra systems, interactive theorem provers like Lean [De Moura and Ullrich, 2021] (which

have garnered increasing interest in recent years from being used in conjunction with large language

models), and automated theorem provers like Z3 [De Moura and Bjørner, 2008]. Programs like Z3

are solvers for Boolean satisfiability (SAT) problems [Papadimitriou and Steiglitz, 2013], which can

encode logical propositions, and extensions known as satisfiability modulo theories (SMT), where

Boolean clauses are replaced by clauses under some other “theory”, e.g., linear inequalities. To see

how solving an SMT problem can be used to prove a theorem, consider the simple case of proving

the following property of quadratics: a quadratic ax2 + bx + c with a > 0 and b2 − 4ac < 0 (i.e.,

a convex quadratic with negative discriminant) has no non-positive values. This is equivalent to

saying that ∀a∀b∀c(a > 0 ∧ b2 − 4ac < 0 =⇒ ∀x(ax2 + bx + c > 0)), which can be expressed in

Z3, and Z3 will tell us that this theorem is indeed true. To do so, Z3 will use a combination of SAT

solving algorithms like conflict-driven clause learning, and a theory solver which can reason about

the nonlinear inequalities that make up the clauses of the expression.

Hence, underlying automated theorem provers are solvers that can work with clauses like linear

or polynomial inequalities. There is thus a tight connection between optimization and automated

reasoning. For example, Z3 would use a linear programming algorithm like simplex if it was given

a satisfiability problem containing linear inequalities. As well, in order to verify a property of some

system, we often want to bound the “worst-case”, which can be done by solving some optimization

problem. Driven by the desire to solve satisfiability problems, the computer science community

has pushed the boundaries of what sorts of problems can be decided. While satisfiability of linear

inequalities has been known to be solvable for quite some time – first with Gaussian elimination

for equalities, which in fact goes back to Newton and possibly before [Grcar, 2011], then with

Fourier-Motzkin elimination for inequalities [Fourier, 1827], and then with the development of linear

programming in the 20th century by Dantzig (see, e.g., Dantzig et al. [1955]), von Neumann, Kan-

torovich, and others – the case for polynomial inequalities is much harder. It was not even known

to be decidable until Tarski [1951], and the first algorithm only came out in the 1970s with Collins

[1976], both of whom were motivated by solving the problem of the “existential theory of the reals”,

i.e., to determine if a set defined by polynomial inequalities is empty.

This is important because, as we will show throughout this thesis, studying properties of Markov

processes with uncertain parameters can be done by studying an appropriate nonlinear system.

Automated reasoning thus provides us with powerful tools to understand them. There is a direct

link between the tools developed in that field and what we will do in this thesis. In particular, in

Chapter 2, we will apply the algorithm of cylindrical algebraic decomposition [Collins, 1976], which

is what Z3 and similar programs use to reason about polynomial inequalities, to perform an exact

sensitivity analysis of Markov models. In Chapter 3, we will embed machine learning models into

our Markov models, and show how to obtain bounds on the behavior of this system by solving a

nonlinear optimization problem.

CHAPTER 1. INTRODUCTION 3

Concretely, the problems that we study in this thesis are both problems seen in health economics.

Namely, Chapter 2 tackles the problem of sensitivity analysis, i.e., seeing if the results of a health

economic analysis are sensitive to perturbations in the parameters, and Chapter 3 can be understood

to be tackling the problem of subgroup analysis, i.e., analyzing outcomes for a group of patients

defined by their features, such as women over the age of 65. As will be discussed further in the

related work, currently, both of these problems are handled in a rather non-rigorous way in the

health economics community, namely relying on sampling and simulations.

Both of these problems are directly inspired by the work in Chapter 4. In that chapter, we show

how Markov models can be used to model a complicated real-world medical problem: simulating the

effect of drone-delivered medical supplies on patient outcomes. To be more specific, when a cardiac

arrest happens at home, defibrillation should be given as soon as possible. Hence, some groups

around the world have begun to study using drones to fly defibrillators to the site of a cardiac

arrest. In this thesis, we present the first cost-effectiveness study of drones for defibrillator delivery,

using data on nearly 25,000 real patients in Ontario. This analysis comprises multiple components,

including facility location optimization, machine learning, and Markov models. It thus inspired the

work in Chapters 2 and 3. As little is known about real-world drone operation, there is significant

uncertainty in some of the inputs of this analysis, which directly inspired the methods in Chapter 2

for doing a rigorous sensitivity analysis. Because machine learning models are used as inputs into

the Markov models, this inspired the algorithm in Chapter 3 for rigorously analyzing the properties

of such systems.

1.2 Summary of Contributions

To summarize the contributions in this thesis:

1. In Chapter 2, we develop a technique for exact sensitivity analysis of Markov reward processes

using cylindrical algebraic decomposition (CAD). We study how to analyze the set of param-

eters such that the total reward satisfies an inequality. Our main technical contribution is

the development of a variant of CAD, that, under the special structure arising from this class

of polynomial systems, is drastically more efficient than a general CAD. We also implement

our algorithm in a software package, markovag, which is based on SymPy as the underlying

computer algebra system.

2. In Chapter 3, we study how to formally verify properties of Markov processes such as bounding

the total reward, reachability, or hitting time, when the parameters are given by the outputs

of machine learning (ML) models. This is important as, e.g., we may want individualized

parameters that are determined by a pretrained ML model. We show that for a broad class

of ML models, this problem is equivalent to a bilinear program, and we develop a novel

decomposition algorithm to solve it, which we show is up to 100x faster than current bilinear

solvers. We develop a powerful software package, markovml, which provides a domain-specific

language for building Markov processes and integrating ML models, and then verifying their

properties.

3. In Chapter 4, we perform the first cost-effectiveness analysis of drones for delivering automated

external defibrillators. Using data on nearly 25,000 real cardiac arrests, we fit nearly one

CHAPTER 1. INTRODUCTION 4

thousand optimal drone networks, across a variety of objectives and network sizes. We then

analyze each drone network by simulating patient outcomes as if the drone network had been

present, and use a Markov model to track patients over time. We find that drones are a

cost-effective intervention, and this holds true across extensive robustness checks.

1.3 Thesis Organization

This thesis compiles work that has been published across three different papers. Chapter 2 is the

paper Chan and Maaz [2024], Chapter 3 is the paper Maaz and Chan [2025], and Chapter 4 is the

paper Maaz et al. [2025]. The first two papers share similar mathematical setup as well as some

related literature, so we provide these in the end of this chapter. Both Chan and Maaz [2024] and

Maaz and Chan [2025] contain case studies that re-analyze Maaz et al. [2025], but in this thesis, we

separate them and relegate these re-analyses to Chapter 4. There are some slight differences from

the published individual papers1.

1.4 Related Work

In this section, we go over the related work that is common to both Chapters 2 and 3. Both are

intimately connected to the literature on uncertain Markov processes as well as cost-effectiveness

analyses in healthcare.

1.4.1 Uncertainty in Markov Processes

Markov processes with parameters in uncertainty sets or defined by differentiable functions have

been well-studied [Caswell, 2019, Dai, 1996, Caswell, 2013, Hermans and De Cooman, 2012, Blanc

and den Hertog, 2008, De Cooman et al., 2014, Marbach and Tsitsiklis, 2001, 2003]. For example,

De Cooman et al. [2014] develop a generalization of the Perron-Frobenius Theorem when the tran-

sition probabilities lie within a credal set. Blanc and den Hertog [2008] study Markov chains with

row-wise uncertainty to compute bounds on hitting times and stationary distributions. However,

this line of research focuses on Markov chains, not Markov reward processes, and as a result is silent

on derived metrics like the total reward. There is also a large literature on Markov decision processes

with uncertain parameters [Nilim and El Ghaoui, 2005, Iyengar, 2005, Delage and Mannor, 2010,

Wiesemann et al., 2013, Goyal and Grand-Clément, 2023, Grand-Clément and Petrik, 2024], but in

this thesis we are not studying Markov decision processes, i.e., there is no policy.

1Proofs are always provided directly after the statement of the result. Additional details, e.g., about experiments,
which are in the appendices of the original papers, are instead integrated into the chapter, as are expository material;
although the several supplementary figures and tables for Chapter 4 are in the appendix. Some of the introductions
are slightly modified, due to the combined introduction written in this chapter, and some text in this chapter is taken
verbatim from the introductions of Chan and Maaz [2024] and Maaz and Chan [2025]. Some section titles may differ
in order to give a unified style across the different chapters. There may also be slight modifications to transition
sentences to reflect the flow of ideas. This thesis is meant to be a self-contained body of work, and my goal is to make
it instructive to future readers. Hence, Chapter 2 contains a full exposition of how cylindrical algebraic decomposition
works from the very basics, which is difficult to find in the literature; and Chapter 3 contains a full tutorial of the
software package, markovml, developed in Maaz and Chan [2025]. Chapter 4, being based on a paper published in a
medical venue, is written rather differently than Chapters 2 and 3, i.e., there is very little math, except for towards
the end of the chapter when we demonstrate the re-analyses using our new algorithms.

CHAPTER 1. INTRODUCTION 5

The paper that most directly inspired the work in this thesis is that of Goh et al. [2018], who

develop a method for finding the maximum or minimum infinite horizon total reward for a Markov

reward process, where the set of probability matrices has a row-wise structure. They show that

solving such a problem can be done by formulating a certain Markov decision process, and then

solving it using standard policy iteration. Our work builds on this in the following two ways. First,

simply knowing the extrema would be insufficient if the threshold lies between the maximum and

minimum, as the policymaker would not know over which parameter values the threshold is met. In

contrast, our work in Chapter 2 allows a policymaker to know exactly which parameter values attain

or violate a given inequality. Second, when we integrate ML-driven parameters as in Chapter 3, we

cannot rely on the special row-wise structure, and hence have to develop a more general technique,

which in this thesis is to leverage bilinear programming.

1.4.2 Cost-Effectiveness Analysis

Markov models have been a ubiquitous tool for cost-effectiveness analysis in healthcare [Carta and

Conversano, 2020]. They are part of the larger class of multistate models [Hougaard, 1999] that

model transitions between health states. These models compute metrics like the incremental cost-

effectiveness ratio (ICER) and net monetary benefit (NMB) [Sonnenberg and Beck, 1993]. Markov

models in healthcare are typically analyzed either using linear algebra or via cohort simulations

[Sonnenberg and Beck, 1993]. As these models exhibit parameter uncertainty, sensitivity analysis is

an essential step [Briggs et al., 1994, Jain et al., 2011, Rudmik and Drummond, 2013]. Indeed, it

is recommended by health economics professional societies [Briggs et al., 2012] and even mandated

by policymakers [Andronis et al., 2009]. However, when sensitivity analyses are limited to one

or two parameters, larger interaction effects or correlations may be missed [Vreman et al., 2021].

Furthermore, the range of parameter values to test are often chosen arbitrarily. In contrast, the

method we present in Chapter 2 can perform arbitrary multi-way sensitivity analyses, uncovering

interactions between parameters, and will identify the full range of parameter values that lead to a

cost-effectiveness result holding.

As well, we often want to analyze subgroups of patients, or to identify heterogeneity between

patients. In the healthcare literature, these are typically studied using Markov “microsimulation”

models, which capture heterogeneous patient trajectories over time [Krijkamp et al., 2018], using

individual-level transition probabilities derived from so-called risk scores – typically logistic regres-

sion, although other models are sometimes used [Mertens et al., 2022, Wilde et al., 2019, Lee et al.,

2020, Breeze et al., 2017]. While existing approaches rely on Monte Carlo simulation, in Chapter 3

we instead provide an exact, non-simulation-based framework that supports a broad class of machine

learning models, aligning with the shift toward more sophisticated analytics in healthcare.

1.5 Mathematical Setup

Notation Vectors are lowercase bold, e.g., x, with i-th entry xi, and matrices by uppercase bold

letters, e.g., M with (i, j)-th entry Mij . The identity matrix is denoted by I, the vector of all ones

by 1, with dimensions inferred from context. The set of integers from 1 to n is denoted by [n].

A (discrete-time, finite-state) Markov chain with n states, indexed by [n], is defined by a row-

stochastic transition matrix P ∈ Rn×n, where Pij is the probability of transitioning from state i to

CHAPTER 1. INTRODUCTION 6

state j, and a stochastic initial distribution vector π ∈ Rn, where πi is the probability of starting

in state i. Furthermore, if we assign rewards to each state, we call this a Markov reward process. A

Markov reward process has a reward vector r ∈ Rn, where ri is the reward for being in state i for

one period. A state is absorbing if it cannot transition to any other state, and transient otherwise.

Below, we recount three of the key properties commonly computed in practice [Puterman, 2014].

Definition 1.1 (Reachability). The probability of eventually reaching a set of states S ⊆ [n], from

the set T ⊆ [n] of transient states, where S ∩ T = ∅, is given by π̃⊤(I − Q)−1R1, where Q is

the transition matrix restricted to T , R is the transition matrix from T to S, and π̃ is the initial

distribution over T .

Definition 1.2 (Expected hitting time). The expected number of steps to eventually reach a set of

states S ⊆ [n], from the set T ⊆ [n] of transient states, where S ∩ T = ∅, assuming that the chain

will reach S from T with probability 1, is given by π̃⊤(I−Q)−11, where Q is the transition matrix

restricted to T , and π̃ is the initial distribution over T .

Definition 1.3 (Total finite-horizon discounted reward). The total finite-horizon discounted reward,

over a finite horizon t, with a discount factor λ ∈ (0, 1) is given by
∑t
m=0 π

⊤λmPmr.

Definition 1.4 (Total infinite-horizon discounted reward). The total infinite-horizon discounted

reward, with a discount factor λ ∈ (0, 1) is given by
∑∞
m=0 λ

mπ⊤Pmr = π⊤ (I− λP)
−1

r.

For each of the above quantities, we can restrict the analysis to a single state, e.g., for reachability

starting from a state i, we simply set π̃i = 1 and for j ̸= i, set π̃j = 0.

Chapter 2

Exact Sensitivity Analysis of

Markov Reward Processes

2.1 Introduction

This chapter develops a new approach to conduct exact, deterministic sensitivity analyses of a

Markov reward process. Our approach leverages ideas from algebraic geometry, particularly cylin-

drical algebraic decomposition (CAD), and applies them to the mathematical structure of common

cost-effectiveness analyses, which enables exact analysis more efficiently than for general polynomial

systems. The implication is that exact multi-way (where multiple parameters are varied simultane-

ously) sensitivity analysis is possible, which allows a policymaker to fully describe complex parameter

regimes where new technologies or medical interventions are cost-effective.

As the parameters of a Markov process may be subject to significant uncertainty, it is common

to do a sensitivity analysis, e.g., in a cost-effectiveness analysis (CEA). A typical approach is a

one-way deterministic sensitivity analysis, which means that one parameter is varied within a range

or set of values while all others are fixed at some nominal value. This approach is straightforward

but does not capture the joint effect of multiple parameters. Multi-way sensitivity analyses create

a multi-dimensional grid of test points over the parameter space, which measures the impact of

parameter interactions, but quickly becomes intractable in the number of parameters tested and grid

granularity. In a systematic review of CEAs, Jain et al. [2011] found that 86% of studies in their

sample conducted a one-way sensitivity analysis, but only 45% conducted a multi-way sensitivity

analysis, likely owing to these difficulties. In practice, multi-way sensitivity analyses rarely extend

beyond two parameters [Briggs et al., 1994]. We note that there is another type of sensitivity analysis

known as probabilistic sensitivity analysis, where parameter values are drawn from distributions and

their joint effect simulated [Baio and Dawid, 2015]. However, they face a similar issue as parameter

distributions are often arbitrarily chosen. In contrast, our method makes no assumptions on the

ranges nor distributions of the parameters, and instead enumerates the full range of parameters that

yields the desired result.

We make the key observation that the questions typically asked in a cost-effectiveness analy-

sis based on a Markov reward process can be described as a system of polynomial inequalities.

Determining whether an intervention remains cost-effective if parameter values vary within given

7

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 8

intervals is thus equivalent to determining whether a polynomial system satisfies a set of inequalities

over those parameter intervals. Hence, we study deterministic sensitivity analysis through the lens of

algebraic geometry, which provides tools that facilitate analysis of multivariate polynomial systems,

such as cylindrical algebraic decomposition [Collins, 1974]. CAD was the first practical algorithm

for solving systems of polynomial inequalities and works by decomposing the multidimensional real

space into cylindrical cells over which each polynomial is sign invariant. Once these cells are de-

fined, the algorithm can easily check feasibility of the polynomial system over each cell [Basu et al.,

2006]. In doing so, we obtain a tree-like representation of the whole space over which the polynomial

system holds. In this chapter, we will use CAD to fully represent the cost-effectiveness region in

a multi-way sensitivity analysis. While analyzing general polynomial systems using CAD remains

computationally challenging, the polynomial systems of interest in a Markov reward process-based

CEA can be analyzed much more tractably.

Our main contributions are as follows.

1. Semialgebraic representation of Markov reward processes. We show that sensitivity analysis of

common cost-effectiveness analysis quantities, including bounding or comparing total benefits,

total costs, incremental cost-effectiveness ratios, and net monetary benefits, is equivalent to de-

termining whether certain polynomial systems are feasible. Thus, describing the cost-effective

parameter space can be done by analyzing the CAD of these systems.

2. Cylindrical algebraic decomposition. We demonstrate that the polynomial systems induced by

the aforementioned analyses belong to a special class that makes the CAD construction more

efficient. This class accommodates important considerations such as the transition probability

matrix possessing the increasing failure rate property. We develop a specialized version of

the general CAD algorithm for this class of systems. We show that this CAD has a singly

exponential size, compared to the doubly exponential size in a general CAD.

3. Software. We develop a Python package, markovag, that implements our algorithms. It

can construct polynomial systems representing sensitivity analysis of common CEA metrics,

analytically characterize the boundary in a multi-way sensitivity analysis, and construct the

CAD.

4. Case studies. To demonstrate the CAD approach to sensitivity analysis, we apply our algo-

rithms and software in two case studies. The first case study uses synthetic data to show that

a traditional parameter grid search could easily mischaracterize a non-linear cost-effectiveness

boundary. The second study, in Chapter 4, we re-analyze a real CEA from the literature and

show that our approach reveals a larger cost-effective parameter space than in the original

analysis and elucidates relationships between model parameters that would not be otherwise

obvious.

2.2 Related Work

This chapter relates to three different bodies of literature, across the domains of health economics,

stochastic processes, and algebraic geometry. The first two are discussed earlier in Section 1.4. The

third one is covered here.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 9

2.2.1 Cylindrical Algebraic Decomposition

A cylindrical algebraic decomposition (CAD) is a tree-like decomposition of the real space represent-

ing the solutions to a polynomial system, which is how we apply it in this chapter. The algorithm

to construct a CAD tree was initially developed by Collins [1974] to solve the problem of the ex-

istential theory of the reals, which asks for a satisfying assignment of real numbers to a Boolean

combination of polynomials. This problem was known to be solvable theoretically by Tarski [1951]

but it was not until Collins [1974] that a practical algorithm was developed. This problem is im-

portant in computer science as it fits into the general framework of satisfiability modulo theories

(SMT), a generalization of the classical Boolean satisfiability problem (SAT) [Papadimitriou and

Steiglitz, 2013] to statements with variables that can be numbers or even data structures [De Moura

and Bjørner, 2011]. Solving polynomial systems with CAD has long been used in robotics motion

planning [Canny, 1987, Schwartz and Sharir, 1990].

More broadly, there are some strong connections between techniques from algebraic geometry

and the operations research literature, particularly for polynomial optimization and semidefinite

programming [Lasserre, 2001, Parrilo, 2003, Blekherman et al., 2012, Parrilo and Thomas, 2019].

However, to date, techniques from this field have not been applied to the study of Markov reward

processes. Our technical contribution will be to apply concepts from algebraic geometry to study

the solutions to our class of polynomial systems, derived from Markov reward process sensitivity

analysis.

The computer algebra literature has identified special cases of polynomial systems for which CAD

can be simplified. There is a recent body of work on speeding up CAD when the system contains

equalities [England et al., 2020], which do arise in the class of systems we study, but the algorithm

remains asymptotically doubly exponential. Incremental CAD [Kremer and Ábrahám, 2020] extends

a CAD of a polynomial system to a CAD of the same system with an additional inequality. We use

a similar idea of extending a CAD by incrementally adding inequalities in our algorithm. Lastly,

Strzeboński [2010] developed an algorithm to construct a CAD from Boolean formulas of CADs.

Our contribution to computer algebra is the identification of a special but broad class of polynomial

systems under which we can construct the CAD more tractably.

2.3 Semialgebraic Representations of Markov Reward Pro-

cesses

We consider, as in Section 1.5, a Markov reward process with n states, transition probability matrix

P ∈ Rn×n, reward vector r ∈ Rn, initial state distribution π ∈ Rn, and a discount rate λ ∈ (0, 1).

We will study inequalities involving the finite and infinite-horizon rewards. As they will figure

heavily in this chapter, we introduce the following notation to refer to them, taking their definitions

from Section 1.5. The expected discounted reward over a finite horizon of length t, Rt, or over an

infinite horizon, R∞, are:

Rt :=

t∑
m=0

π⊤λmPmr (2.1)

and

R∞ := π⊤(I− λP)−1r. (2.2)

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 10

For the purposes of sensitivity analysis, we consider Rt and R∞ as functions of π, P, and r,

since these are the quantities most likely to be estimated from data and subject to uncertainty. We

assume that λ is fixed. Clearly, Rt is a polynomial in π, P, and r. For R∞, we can re-write the

matrix inversion as

R∞ =
1

det (I− λP)
π⊤ adj (I− λP)r, (2.3)

where det(·) is the determinant and adj(·) is the adjugate matrix operator [Strang, 2022]. In this

form, there are three key properties of R∞ that we will use.

Lemma 2.1. R∞ is a ratio of two polynomials in π, P, and r. Furthermore, det(I− λP) > 0 and

the adjugate adj(I− λP) has all non-negative entries.

Proof. Let M = I− λP. Each element of the adjugate matrix is the determinant of a submatrix of

M, and the determinant is a multilinear map, and so each element of adjM is a polynomial of a

submatrix of P. Thus π⊤ adj (M)r is a polynomial of π, P, and r. As noted, detM is a polynomial

of P, so R∞ is a ratio of two polynomials. Next, M has the property that all of its real eigenvalues are

positive [Berman and Plemmons, 1994, Theorem 2.3 in Chapter 6]. Since any complex eigenvalues

come in conjugate pairs, the product of all eigenvalues, which equals the determinant, is positive.

Lastly, the inverse of M has all non-negative entries [Berman and Plemmons, 1994, Theorem 2.3

in Chapter 6], and we already know its determinant is positive, so the adjugate of M has all non-

negative entries.

Example 2.2. In a Markov chain with n = 2 states, det(I−λP) = 1+λ2p11p22−λ2p12p21−λp11−
λp22 and adj(I− λP) is [

1− λp22 λp12

λp21 1− λp11

]
.

Hence, R∞ is the following ratio of polynomials in P, π, and r:

r1(λp21π2 + π1(1− λp22)) + r2(λp12π1 + π2(1− λp11))
1 + λ2p11p22 − λ2p12p21 − λp11 − λp22

.

Sensitivity analyses of Markov reward processes, and cost-effectiveness analyses in particular, are

typically concerned with identifying a range of input values over which inequalities involving Rt and

R∞ hold. Given the forms of Rt and R∞ provided above, particularly in Lemma 2.1 for R∞, typical

inequalities associated with sensitivity analysis can all be written as polynomial inequalities. In the

examples that follow, we focus on R∞; the application to Rt is straightforward. Importantly, since

the denominator of R∞ is always positive, the sign of the inequality remains unchanged as elements

of P are varied.

Total reward. Given a threshold γ ∈ R, a policymaker may be interested in

π⊤(I− λP)−1r ≥ γ, (2.4)

which can be written as the polynomial inequality

π⊤ adj(I− λP)r− γ det(I− λP) ≥ 0. (2.5)

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 11

This approach can be extended to the comparison of two interventions, labeled a and b. Deter-

mining whether the total reward associated with intervention a is greater than that of b

π⊤
a (I− λPa)

−1ra ≥ π⊤
b (I− λPb)

−1rb (2.6)

can be written as the polynomial inequality

π⊤
a adj(I− λPa)ra det(I− λPb)− π⊤

b adj(I− λPb)rb det(I− λPa) ≥ 0. (2.7)

Comparing more than two interventions would result in a system of polynomial inequalities.

Net monetary benefit (NMB). The net monetary benefit is defined as a constant willingness-

to-pay threshold (W) for one unit of benefit, multiplied by the infinite horizon benefit, and then

subtracting the infinite horizon cost. Let b and c be the vectors representing the one-period benefit

and cost for each state. Then NMB equals

Wπ⊤(I− λP)−1b− π⊤(I− λP)−1c = π⊤(I− λP)−1(Wb− c). (2.8)

The right-hand side expression is equivalent to the total reward when r = Wb − c. Hence, an

inequality that bounds the NMB can be written similarly to (2.5).

Incremental cost-effectiveness ratio (ICER). The incremental cost-effectiveness ratio is de-

fined as the ratio between the difference in the infinite horizon costs and the difference in the infinite

horizon benefits of two interventions. For two interventions a and b, the ICER is

π⊤
a (I− λPa)

−1ca − π⊤
b (I− λPb)

−1cb
π⊤
a (I− λPa)−1ba − π⊤

b (I− λPb)−1bb
. (2.9)

Bounding the ICER by γ results in a polynomial inequality after rearranging terms.

Remark 2.3 (Death state). ManyMarkov chains used in health economic models include an absorbing

“death” state: once the process transitions there it remain in this state with probability 1 and reward

0. In this case, the infinite horizon expected total reward without discounting is finite and can be

written as [Puterman, 2014]:

π̄⊤(I−Q)−1r̄, (2.10)

where Q is a (n − 1) × (n − 1) matrix representing transitions between the transient states, and r̄

and π̄ are the subvectors corresponding to the rewards and initial distribution, respectively, on the

transient states. Bounding this quantity can be similarly reformulated into a polynomial inequality.

Note that the constraints on Q will be substochastic, i.e., the row sums need only be less than or

equal to 1. As well, the row sums of Q need to be strictly greater than zero to ensure that I −Q

is invertible. Multiple absorbing states can also be accommodated easily. The takeaway is that our

subsequent development for discounted Markov reward processes applies to this case as well.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 12

2.4 Cylindrical Algebraic Decomposition

Motivated by the question “for what values of π, P, and r does a given inequality hold?”, this

section studies general systems of polynomial inequalities. The focus is on those systems that possess

relevant characteristics associated with Markov reward process analysis, as described in the previous

section. For solving polynomial inequalities (i.e., identifying regions or points in the domain that

satisfy the inequalities), the standard representation is a cylindrical algebraic decomposition (CAD).

We provide an overview of CAD following Basu et al. [2006] and refer the reader to that book for

more details.

A CAD of a polynomial system is a finite decomposition of Rk into disjoint cells where in each

cell each polynomial in the system is sign-invariant1. Having such a decomposition allows us to

easily test consistency of the system at a given point in the domain and describe the regions over

which the system is consistent. Next, we formally define a cell.

Definition 2.4 (Cell). A cell is defined recursively.

1. In R1, a cell is either an open interval or a point.

2. Let k ≥ 1 and C be a cell in Rk. In Rk+1, a cell is either of the form {(x, y) ∈ Rk+1 | x ∈
C, f(x) < y < g(x)} or {(x, y) ∈ Rk+1 | x ∈ C, y = f(x)}, where f and g are either algebraic

functions2 or ±∞, with f(x) < g(x) for all x ∈ C.

Let R[{xi}ki=1] be the ring of polynomials in x1, . . . , xk. If we have a finite set of polynomials

F ⊂ R[{xi}ki=1], we call a CAD adapted to F if each f ∈ F is sign-invariant (0, +, or −) over each
cell. An important theorem from algebraic geometry is that for every finite set of polynomials F ,

there exists a CAD adapted to F (see Lojasiewicz [1965] or Basu et al. [2006, Theorem 5.6]).

Next, we consider inequalities involving elements of F . Let f ∈ R[{xi}ki=1]. An f -atom is an

expression f ▷◁ 0, where ▷◁∈ {=, >,<,≥,≤}. A semialgebraic set is defined by Boolean combinations

of f -atoms and is closed under union, intersection and complement. A corollary of the above theorem

is that any semialgebraic set of f -atoms can be represented equivalently by a subset of the cells of the

CAD adapted to F . Then, to test the consistency of a semialgebraic set, one can simply construct

the CAD adapted to F and use a single point in each cell to test the system’s consistency. Lastly,

we can obtain an algebraic description of each cell to represent all the solutions of the system.

The recursive nature of the cells of a CAD make it intuitive to represent as a tree.

Example 2.5. Consider the unit sphere x2 + y2 + z2 − 1 = 0. Its simplest CAD is:.

x = −1

y = 0

z = 0

−1 < x < 1

y = −
√
1 − x2

z = 0

−
√
1 − x2 < y <

√
1 − x2

z = −
√

1 − x2 − y2 z =
√

1 − x2 − y2

y =
√
1 − x2

z = 0

x = 1

y = 0

z = 0

The CAD can be constructed using straightforward geometric reasoning. We start with one-

dimensional cells, so we project the sphere to the unit disc x2 + y2 ≤ 1 in R2, and then again to the

1Different CADs can represent the same system, e.g., by splitting cells unnecessarily.
2An algebraic function is defined as being the zero of some polynomial. It is a strictly larger class of functions

than the polynomials. For example,
√
x is not a polynomial, but it is algebraic, as it is a solution to y2 − x = 0. On

the other hand, sinx is not algebraic.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 13

interval −1 ≤ x ≤ 1 in R1. Form cells −1, (−1, 1), and 1. Given the x values in each cell, determine

the feasible y values based on the unit disc. Repeat for the z values based on the unit sphere.

A cell in R3 is the conjunction of all the nodes in a path from x to z. An example is x = −1∧y =

0 ∧ z = 0. By taking the disjunction of all cells, we get the full decomposition of the unit sphere.

This simple example illustrates the general principles for how to construct a CAD for any poly-

nomial system in Rk: 1) Repeatedly project the polynomials to R1; 2) Create cells by identifying

appropriate points (i.e., roots) and intervals; 3) Over each cell in R1, construct a cylinder in R2, and

create cells in R2 by computing the roots and intervals of each projection in R2. 4) Repeat until we

reach Rk.
While the above approach is intuitive, it required the development of special projection operators

[Collins, 1974, 1976] to allow systematic CAD construction for arbitrary systems. Next, we describe

the algorithm for generating a CAD of a system. As CAD crucially hinges on projection operators

with certain properties, we now describe the Hong projection operator in detail. Later, we will

analyze the behavior of the Hong projection operator for our technical results.

2.4.1 Background on Hong Projection Operator

To describe Hong’s projection operator [Hong, 1990], we need to introduce some new notation. To

use a projection operator, we have to choose a main variable, or mvar. The polynomials will be

treated as univariate polynomials in the mvar. Then, for a polynomial f , the leading term, ldt(f),

is the term with the highest exponent of the mvar, the leading coefficient, ldcf(f), is the coefficient

of ldt(f), and the degree, deg(f) is the highest exponent with which the mvar appears.

Two crucial concepts in algebraic geometry are the reducta and the principal subresultant coef-

ficients, which we define below.

Definition 2.6 (Reducta). The reductum of a polynomial f with a chosen mvar is red(f) = f −
ldt(f). We inductively define the ith level reductum as: red0(f) = f and redi(f) = red(redi−1(f)).

Then, the reducta set RED(f) = {redi(f), 0 ≤ i ≤ deg(f), redi(f) ̸= 0}.

Example 2.7. Let f = x1x2 + x3x4 − 1, with mvar x1. Then, red0 = x1x2 + x3x4 − 1, and

red1 = x3x4 − 1. So, RED(f) = {x1x2 + x3x4 − 1, x3x4 − 1}.

Definition 2.8 (Principal subresultant coefficients). Let there be two polynomials f, g, with degrees

p, q, respectively, having chosen the mvar x. Let p > q (resp. p = q), and fix 0 ≤ i ≤ q (resp. 0 ≤
i ≤ p−1). Define the ith Sylvester-Habicht matrix, denoted SylvHai(f, g), as the matrix whose rows

are xq−i−1f, xq−i−2f, · · · , f, g, · · · , xp−i−1g, considered as vectors in the basis [xp+q−i−1, · · · , x, 1];
it has p+ q− i columns and p+ q−2i rows. Then, the ith principal subresultant coefficient, denoted

psci, is the determinant of the submatrix of SylvHai(f, g) obtained by taking the first p + q − 2i

columns. Then, the PSC set PSC(f, g) = {psci(f, g), 0 ≤ i ≤ min(deg(f),deg(g)),psci(f, g) ̸= 0}.

Example 2.9. Let f = 3x2 + 5x + 6, g = 4x2 + 2x + 1, with mvar x, and say we want psc0. The

Sylvester-Habicht matrix will have 4 columns and 4 rows. The basis for the rows is [x3, x2, x, 1]. For

the first row, we compute x · f = 3x3 + 5x2 + 6x, which is [3, 5, 6, 0] in our basis. The second row

is [0, 3, 5, 6]. For the third row, we take g, which yields [0, 4, 2, 1]. For the fourth row, we compute

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 14

x · g, yielding [4, 2, 1, 0] in our basis. Hence, we have the following matrix:
3 5 6 0

0 3 5 6

0 4 2 1

4 2 1 0


Then, psc0 is the determinant of the whole matrix, which is −343.

The operations defined above are used in the Hong projection operator. We let D represent the

derivative operator. Then, the Hong projection operator PROJH(F) of a set F of polynomials is

[Hong, 1990]:

PROJH(F) = PROJ1(F) ∪ PROJ2(F) (2.11)

PROJ1(F) =
⋃
f∈F

f ′∈RED(f)

[{ldcf(f ′)} ∪ PSC(f ′,Df ′)] (2.12)

PROJ2(F) =
⋃

f,g∈F
f≺g

⋃
f ′∈RED(f)

PSC(f ′, g) (2.13)

Above, f ≺ g denotes an arbitrary linear ordering, to not loop over redundant pairs. The

operator PROJ1 tells us to loop over the set F , and loop over the reducta set for each, and apply

ldcf and PSC. The operator PROJ2 tells us to loop over (non-redundant) pairs f, g ∈ F , take the

first one’s reducta set, and calculate the PSC set between each of them with g. Hong [1990] proved

that this is a valid projection operator.

Now that we have defined the Hong projection operator, we demonstrate an example, using the

sphere, as in Example 2.5.

Example 2.10. Suppose we have the polynomial x2+y2+z2−1. We want to compute the projection

factors of this set, which only has a single polynomial. In keeping with our notation, we set F3 =

{x2 + y2 + z2 − 1}. We now eliminate z and then y.

1. Eliminate z.

• Apply PROJ1.

– Set f = x2 + y2 + z2 − 1. Then, RED(f) = {x2 + y2 + z2 − 1, x2 + y2 − 1}.
∗ Set f ′ = x2 + y2 + z2 − 1. We have ldcf(f ′) = 1. Also, Df ′ = 2z. We now

compute PSC.

· Set i = 0. SylvHa0 is a 3 × 3 matrix, who’s rows have the basis [z2, z, 1]. We

have:

SylvHa0(f
′,Df ′) =

1 0 x2 + y2 − 1

0 2 0

2 0 0


Then, psc0(f

′,Df ′) is the determinant of the entire above SylvHa matrix,

equaling 4− 4x2 − 4y2.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 15

· Set i = 1. SylvHa1 is a 1×2 matrix, who’s rows have the basis [z, 1]. We have:

SylvHa1(f
′,Df ′) =

[
2 0

]
Then, psc1(f

′,Df ′) is the determinant of the submatrix of the above matrix

taking the first 1 columns, equaling 2.

∗ Set f ′ = x2 + y2 − 1. We have ldcf(f ′) = x2 + y2 − 1. Also, Df ′ = 0. We now

compute PSC. As both are degree 0 in z, it is empty.

• Apply PROJ2: can skip as we only have a single polynomial.

• Hence, F2 = {1, 2, x2 + y2 − 1,−4x2 − 4y2 + 4}. We can drop the constants (see Section

2.4.2).

2. Eliminate y.

• Apply PROJ1.

– Set f = x2 + y2 − 1. Then, RED(f) = {x2 + y2 − 1, x2 − 1}.
∗ Set f ′ = x2 + y2 − 1. We have ldcf(f ′) = 1. Also, Df ′ = 2y. We now compute

PSC. We omit some details as we showed a detailed run-through above.

· Set i = 0. We have:

SylvHa0(f
′,Df ′) =

1 0 x2 − 1

0 2 0

2 0 0


Then, psc0(f

′,Df ′) is the determinant of the entire above SylvHa matrix,

equaling 4− 4x2.

· Set i = 1. We have:

SylvHa1(f
′,Df ′) =

[
2 0

]
Take the first 1 columns: psc1(f

′,Df ′) equals 2.

∗ Set f ′ = x2−1. We have ldcf(f ′) = x2−1. Also, Df ′ = 0. Lastly, PSC(f ′,Df ′) =
∅.

– Set f = −4x2 − 4y2 + 4. Then, RED(f) = {−4x2 − 4y2 + 4,−4x2 + 4}.
∗ Set f ′ = −4x2 − 4y2 + 4. We have ldcf(f ′) = −4. Also, Df ′ = −8y. We now

compute PSC.

· Set i = 0. We have:

SylvHa0(f
′,Df ′) =

−4 0 4− 4x2

0 −8 0

−8 0 0


Then, psc0(f

′,Df ′) = −256 + 265x2.

· Set i = 1. We have:

SylvHa1(f
′,Df ′) =

[
−8 0

]
Take the first 1 columns: psc1(f

′,Df ′) = −8.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 16

∗ Set f ′ = −4x2 + 4. We have ldcf(f ′) = −4x2 + 4. Also, Df ′ = 0. Lastly,

PSC(f ′,Df ′) = ∅.

• Apply PROJ2.

– Set f = x2 + y2 − 1, g = −4x2 − 4y2 + 4. We have RED(f) = {x2 + y2 − 1, x2 − 1}.
∗ Set f ′ = x2 + y2 − 1. We have psc0 = 0 and psc1 = 0 (we omit the construction

of the SylvHa matrices).

∗ Set f ′ = x2 − 1. We have psc0 = 1− 2x2 + x4.

• Hence, F1 = {−8,−4, 0, 1, 2,−256 + 256x2,−4x2 + 4, x2 − 1, x4 − 2x2 + 1}. We can drop

the constants (see Section 2.4.2).

Therefore, we have the projection factors after eliminating z: F2 = {x2+ y2− 1,−4x2− 4y2+4}
and the projection factors after eliminating y: F1 = {−256+ 256x2,−4x2 +4, x2 − 1, x4 − 2x2 +1}.

2.4.2 Technical Lemmas About Reducta and Principal Subresultant Co-

efficients

We introduce several technical lemmas about reducta and principal subresultant coefficients through

which we will study the behavior of the Hong projection, which will be especially useful for the

polynomial systems we will study.

First, we have the following lemmas about reducta sets.

Lemma 2.11. If f is degree 0, then
⋃
f ′∈RED(f) [ldcf(f

′) ∪ PSC(f ′,Df ′)] = {f}.

Proof. RED(f) = {red0(f)} = f , and ldcf(f) = f , and Df = 0, so PSC(f,Df) = ∅. Hence, we only

have {f}.

Lemma 2.12. If f is degree 1, then
⋃
f ′∈RED(f) [ldcf(f

′) ∪ PSC(f ′,Df ′)] = {ldcf(f), f − ldt(f)}.

Proof. Here, RED(f) = {f, f−ldt(f)}. Now, Df = ldcf(f) is degree-zero, so to compute PSC(f,Df) =
{psc0(f,Df)}, note that SylvHa0(f,Df) is the 1×1 matrix with the entry ldcf f , so the determinant

and hence psc0(f,Df) = ldcf f . Lastly, we will include ldcf(f), and ldcf(f − ldt(f)) = f − ldt(f),

because it is degree-zero. So we are left with {ldcf(f), f − ldt(f)}.

Next, we have the following lemmas about principal subresultant coefficients.

Lemma 2.13. Let f, g, with g degree 0 and deg(f) = d > 0. Then PSC(f, g) = {(−1)⌊d/2⌋ · gd}.

Proof. Here, PSC(f, g) = {psc0(f, g)}. We form SylvHa0(f, g) as follows: it is a d × d matrix, and

no rows will correspond to f , because deg(g) = 0. So, it is the antidiagonal matrix with entries g.

We perform ⌊d/2⌋ row swaps (i.e., first and last, second and second last, etc.) to make it a diagonal

matrix, noting that every swap causes a sign change in the determinant. Then, the determinant of

the diagonal matrix is gd, which is multiplied by (−1)⌊d/2⌋ because of the swaps.

Lemma 2.14. Let f, g, with g degree 0, and f have a degree sequence, i.e., exponents of x with a

non-zero coefficient, of D. Then,
⋃
f ′∈RED(f) PSC(f

′, g) = {(−1)⌊d/2⌋ · gd, d ∈ D}.

Proof. The degrees of the reducta set of f are exactly the degree sequence D. The result follows

from Lemma 2.13.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 17

Remark 2.15. For the purposes of CAD, the sign change, though mathematically accurate, is not

necessary to keep track of, because ultimately we care about the roots of the projection factors,

which is unaffected by negation. Therefore, when we apply Lemmas 2.13 and 2.14, we will ignore

the (−1)⌊d/2⌋ sign.

We summarize some key takeaways here:

• For PROJ1, degree 0 polynomials (in the mvar, although they may still have positive degree

in other variables), are just copied over into the projection factor set.

• For PROJ2, we can ignore pairs with both degree-zero polynomials. If the pair has a single

degree-zero polynomial, we can easily use Lemma 2.14.

• For constants, i.e., degree 0 in all variables, we need not store them, as they will be propagated

to every subsequent projection factor set, and in the base phase do not contribute to creating

any cells.

2.4.3 The CAD Algorithm

Having now defined the machinery of the Hong projection operator, and demonstrating some prop-

erties of it, we are now ready to give the algorithm of Collins [1974] below. We refer the reader to

Chapters 5 and 11 of Basu et al. [2006] for a comprehensive description of the algorithm. Here, we

break up CAD into two algorithms, which we call the decision phase and solution formula phase.

The pseudocode of these algorithms is given in Algorithm 1 and Algorithm 2, respectively. The

decision phase of CAD determines whether a polynomial system is consistent, whereas the solution

formula phase constructs the full CAD tree as in Example 2.5.

The input of the decision phase is a set Fk ⊂ R[{xi}ki=1] of polynomials in k variables. The

algorithm has three main steps: projection, base case, and lifting. In the projection step, the set

Fk is iteratively projected down to lower dimensions, forming sets of polynomials that are called

projection factors in Rk−1,Rk−2, · · ·R1, denoted Fk−1, Fk−2, · · ·F1, respectively. In the base case

step, we form cells in R1 using F1 and then store a single sample point for each cell. Finally, in the

lifting step, the CAD is lifted iteratively back up to Rk. The final result is a set of points in Rk

where each point represents a cell over which each f ∈ Fk is sign-invariant. Therefore, the truth of

a system of polynomials where the atoms are composed of f ∈ Fk can be determined by evaluation

at each test point, due to the sign-invariance property. Thus, Algorithm 1 allows us to determine if

any solution exists, which is sufficient for many applications, e.g., SMT.

If we want an algebraic description of all points that satisfy the system, like in the case of a

sensitivity analysis, then we require Algorithm 2. This algorithm produces the desired result for

projection-definable systems [Brown, 1999]. A system is projection-definable if no two cells that

have different truth values share the same sign for any projection factor. In this case, the solution

formula can be constructed purely using the signs of the projection factors. Algorithm 2 requires

information from Algorithm 1, namely the set of all projection factors and cells (specifically, their

sample points), and relies on the sign-invariance of projection factors over the cells in their respective

dimension. Algorithm 2 is sufficient, because as we will show in Lemma 2.27, all polynomial systems

that arise in our sensitivity analysis application are projection-definable. Systems that are not

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 18

Algorithm 1 Cylindrical algebraic decomposition: decision phase

Require: A set of polynomials Fk ⊂ R[{xi}ki=1]
Ensure: Sample points in each cell of the CAD adapted to Fk

Step 1: Projection
1: for i = k, k − 1, . . . , 2 do
2: From Fi, construct the set of projection factors Fi−1 ⊂ R[{xj}i−1

j=1] by eliminating xi
3: end for

Step 2: Base Case
4: r ← Ordered list of roots of all f ∈ F1, labeled r1, r2, . . .

5: Construct cells: {rj}|r|j=1 ∪ {(rj , rj+1)}|r|−1
j=1 ∪ {(−∞,min r), (max r,∞)}

Calculate sample points
6: for each cell do
7: if cell is a point then
8: Sample point is the point itself
9: else if cell is an interval with finite endpoints then

10: Sample point is average of endpoints
11: else if cell is (−∞,min r) then
12: Sample point is min r − 1
13: else if cell is (max r,∞) then
14: Sample point is max r + 1
15: end if
16: end for

Step 3: Lifting
17: C ← sample points of cells in R1

18: for i = 2, 3, . . . , k do
19: C′ ← ∅
20: for each cell C ∈ C do
21: Evaluate the polynomials in Fi at the sample point of C
22: Find the roots of these polynomials and construct cells and sample points in Ri as in the

base case
23: Add these sample points to C′
24: end for
25: C ← C′
26: end for
27: return C

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 19

projection-definable are outside the scope of this thesis. The interested reader is referred to Brown

[1999].

Algorithm 2 Cylindrical algebraic decomposition: solution formula phase

Require: A projection-definable polynomial system, and all projection factors Fk ∪ Fk−1 ∪ Fk−2 ∪
· · · ∪ F1 and the set of sample points C from Algorithm 1

Ensure: A CAD-based formula representing all the solutions to the polynomial system
1: cell formulas ← empty list
2: for C ∈ C where the polynomial system holds over C do
3: formulas ← empty list
4: for f ∈ Fk ∪ Fk−1 ∪ Fk−2 · · · ∪ F1 do
5: if f is negative at C then
6: Append atom f < 0 to formulas
7: else if f is zero at C then
8: Append atom f = 0 to formulas
9: else if f is positive at C then

10: Append atom f > 0 to formulas
11: end if
12: end for
13: Append

∧
formulas to cell formulas

14: end for
15: return

∨
cell formulas

The crucial step in Algorithm 1 is the projection step (line 2), which is now the most well-

studied part of the algorithm. The first valid projection operator was given by Collins [1974] and

later simplified by Hong [1990], which gives smaller projection factor sets while still maintaining

soundness and completeness. In our implementation, we use the Hong [1990] projection operator,

which was just defined in Section 2.4.1. In Algorithm 2, the conjunctions in line 13 can be visualized

in the tree in Example 2.5 as the paths from the top of the tree to the leafs, while the disjunctions

in line 15 are the set of all paths, which comprise the entire tree.

We now have all the information necessary to rigorously construct the CAD of an arbitrary

system. As an example, we revisit the 3D sphere CAD and construct it per Algorithms 1 and 2.

Example 2.16. For the unit sphere, our system is x2+ y2+ z2− 1 = 0, so F3 = {x2+ y2+ z2− 1}.
We eliminate z and then y.

Algorithm 1:

• Projection (see Example 2.10)

– Eliminate z: F2 = {x2 + y2 − 1,−4x2 − 4y2 + 4}

– Eliminate y: F1 = {−256 + 256x2,−4x2 + 4, x2 − 1, x4 − 2x2 + 1}

• Base case. The roots of F1 are {−1, 1}. So the cells are {(−∞,−1),−1, (−1, 1), 1, (1,∞)}.
We choose the corresponding sample points {−2,−1, 0, 1, 2}.

• Lifting

– To R2:

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 20

∗ Over sample point −2, we have the polynomials {3+y2, 12−4y2}, with roots {−
√
3,+
√
3},

hence cells {(−∞,−
√
3),−

√
3, (−

√
3,
√
3),
√
3, (
√
3,∞)}, with sample points {−

√
3−

1,−
√
3, 0,
√
3,
√
3 + 1}

∗ Over sample point −1, we have the polynomials {y2,−4y2}, with roots {0}, hence

cells {(−∞, 0), 0, (0,∞)}, with sample points {−1, 0, 1}
∗ Over sample point 0, we have the polynomials {y2− 1,−4y2 +4}, with roots {−1, 1},
hence cells {(−∞,−1),−1, (−1, 1), 1, (1,∞)}, with sample points {−2,−1, 0, 1, 2}

∗ Over sample points 1 and 2, the analysis is the same as with sample point −1 and

−2, respectively, because x always appears as x2 in F1

– To R3: We plug in each (x, y) sample point into x2 + y2 + z2 − 1 and construct cells and

sample points for z; we omit the details for brevity. There are 41 cells in total.

• Truth of the system: Evaluate x2 + y2 + z2 − 1 at each sample point and check if it equals

zero. The system holds over the following 6 cells, represented by their (x, y, z) sample points:

{(−1, 0, 0), (0,−1, 0), (0, 0,−1), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

Algorithm 2:

The set of projection factors is F1∪F2∪F3. We evaluate their signs over each cell. We can ignore

{−4x2 − 4y2 +4,−4x2 +4,−256+ 256x2} as they are multiples of other projection factors. We can

also ignore x4−2x2+1, because it equals (x2−1)2, so it is always non-negative, and zero if and only

if −1+ x2 is zero, so it is also redundant to list in the solution formula.3 Thus, the three projection

factors that remain are {x2 − 1, x2 + y2 − 1, x2 + y2 + z2 − 1}. This system is projection-definable,

as no pair of cells with differing truth values share the same signs of the projection factors, which

can be manually checked.

Next, we show an example of constructing the solution formula for a given a cell. Over the

cell with sample point (0, 0, 1) applied to the three remaining projection factors we get the atoms

{x2− 1 < 0, x2+ y2− 1 < 0, x2+ y2+ z2− 1 = 0}, and hence the formula −1 < x < 1∧−
√
1− x2 <

y <
√
1− x2 ∧ z =

√
1− x2 − y2. Following a similar approach for the other cells, we recover the

full CAD of the sphere in Example 2.5.

Although we have a general approach to construct the CAD of an arbitrary system, the key

challenge is computational complexity. Due to the complicated ways polynomials can interact during

the projection phase, the number of projection factors and the size of the CAD can quickly grow

large. CAD has a complexity that depends polynomially on the degrees and number of polynomials,

but is doubly exponential in the number of variables [England et al., 2015]. Indeed, it is possible to

construct examples where this doubly exponential complexity is attained [Basu et al., 2006]. This

presents a significant challenge in computing CADs for even more than a few variables. As well,

the order of which variables to eliminate during the projection step can significantly affect both the

runtime and the space needed to store the CAD.

3Note that these “algebraic reasoning” arguments like ignoring multiples, solving inequalities of univariate poly-
nomials, etc., are not strictly part of CAD – they should be handled at the level of a (good) computer algebra
system.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 21

2.4.4 A Special Class of Polynomial System

In the remainder of this section we examine a specific class of polynomial systems that is motivated

directly by our Markov reward process context. We demonstrate that due to the special structure of

this system, its CAD can be generated much more efficiently than the general case. We also present

a specialized version of the general CAD algorithm, tailored to this polynomial system class.

We consider a system of polynomials that have two different “types” of variables: x-type variables

and α-type variables. We have η of the x-type variables, so that we index them {xi}ηi=1. The α-

type variables are doubly indexed and are arranged as follows: there are ϕ simplices, and in the

ith simplex, there are τi of the α-type variables. In other words, we index the α-type variables

as {αi,j}i∈[ϕ],j∈[τi]), where we define the notation [m] := {1, . . . ,m} for a positive integer m. By

definition, each variable αi,j is present in only a single simplex. Thus, there are a total of η+
∑ϕ
i=1 τi

variables. Let R[{xi}ki=1, {αi,j}i∈[ϕ],j∈[τi]] represent the ring of polynomials of these variables, and

let f∗ be a polynomial in this ring. We will call the atom f∗ ≥ 0, the defining inequality of the

system.

Our polynomial system of interest is

f∗ ≥ 0

xi ≥ 0 i ∈ [η]

τi∑
j=1

αi,j = 1 i ∈ [ϕ]

0 ≤ αi,j ≤ 1 i ∈ [ϕ], j ∈ [τi]

(M)

We focus on the case where xi is sign-constrained both because of practical motivations (e.g.,

rewards and costs associated with real-world problems tend to be sign-constrained) and because it

leads to slightly more complex CAD trees (due to the presence of the endpoint 0) allowing us to

showcase the full range of the CAD algorithm. The following development fully applies to the case

where xi is free, except that there will be fewer cells.

Remark 2.17. The connection to our sensitivity analysis motivation is that f∗ ≥ 0 is the condition

the policymaker wants to test (e.g., NMB greater than a threshold), the x-type variables represents

rewards, costs and benefits, and the α-type variables represent probabilities, i.e., π and the rows of

P.

Despite the general challenges described at the end of the previous subsection, we will show that

we can construct a CAD for system (M) far more efficiently than general systems. This is made

possible due to the following:

1. For a given i, the αi,j variables form a unit simplex.

2. For a given i, j, the αi,j variable only appears in a single simplex constraint.

3. The x-type variables only appear in f∗ ≥ 0.

Our approach takes advantage of this structure as follows. First, we construct a CAD of each

simplex (which can be parallelized), and then conjunct them together. Then, relying on a special

property associated with the projection factors of f∗ that we describe later (“simplex-extensibility”),

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 22

we can efficiently lift to include the x-type variables, which only show up in the defining inequality,

to construct the full CAD.

CAD of simplices

Since all variables are restricted to be between 0 and 1, the construction of a simplex CAD is

straightforward.

Theorem 2.18. Consider a unit simplex {αj , j ∈ [τ] |
∑τ
j=1 αj = 1, 0 ≤ αj ≤ 1, j ∈ [τ]}. Its CAD

is given by the following tree:

1. The first level has three cells: α1 = 0, 0 < α1 < 1, α1 = 1.

2. For 2 ≤ i ≤ τ−1, for a given cell in level i−1, the children cells in level i are 0, (0, 1−
∑i−1
j=1 αj)

and 1−
∑i−1
j=1 αj.

3. The last level (i = τ) has a single child cell for each of the τ −1 level cells: ατ = 1−
∑τ−1
j=1 αj.

The tree also propagates down any cells defined by an equality on the preceding variables.

Proof. Observe that a valid representation of a simplex can be constructed as follows: α1 ∈ [0, 1],

α2 ∈ [0, 1− α1], α3 ∈ [0, 1− α1 − α2], and so on, until ατ = 1−
∑τ−1

1 αi. Clearly, each variable is

in [0, 1]. The sum
∑τ

1 αi ≥ 1, by summing the lower bounds of these intervals. Next, by looking at

the partial sums of the upper bounds, we can see that α1 + α2 ≤ 1, α1 + α2 + α3 ≤ 1, and so on, so

that
∑τ

1 αi ≤ 1. Therefore,
∑τ

1 αi = 1, as required by the simplex constraint.

Then, we convert this into a valid CAD by decomposing each of the defining intervals into their

cells, namely the endpoints and the open interval.

Remark 2.19. By propagating any equality constraints active on the current cell, we may obtain a

degenerate interval (i.e., a point) in which case there is only one new cell. This is the case if, for

example, (taking a simplex with four variables) 0 < α1 < 1∧α2 = 1−α1. Then, surely α3 = α4 = 0.

It is easy to extend this simplex construction to the case where
∑τ
i=1 αi = κ ≤ 1, as the defining

representation of the simplex is now α1 ∈ [0, 1], α2 ∈ [0, κ − α1], α3 ∈ [0, κ − α1 − α2], and so

on, until ατ = κ −
∑τ−1
i=1 αi. Also, we can extend this construction to the inequality case, where∑τ

i=1 αi ≤ κ ≤ 1, by replacing the node at the final level with ατ ≤ κ−
∑τ−1
i=1 αi.

Since each α-type variable only occurs in a single simplex, it is trivial to create a CAD for a set

of simplices, by “gluing” them together.

Corollary 2.20. Consider ϕ unit simplices {αi,j , i ∈ [ϕ], j ∈ [τi] |
∑τi
j=1 = 1, 0 ≤ αi,j ≤ 1, i ∈

[ϕ], j ∈ [τi]}. To construct a cell in the CAD of the conjunction of these simplices, choose a single

cell from each of the individual simplices’ CADs, and conjunct them. The full CAD is the disjunction

of all such cells.

Proof. We proceed by induction. In the base case, with one simplex, it is trivially true. For the

inductive step, assume we have the CAD of the conjunction of m simplices. Then, to lift this CAD

to include the m+ 1-st simplex, first note that because the α-type variables only appear in a single

simplex, the lifting is identical over each cell, and indeed the lifting process will simply yield the

additional m + 1-st simplex itself. Therefore, each cell in the CAD of the conjunction of m + 1

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 23

simplices is the conjunction of a single cell from each of the simplices individually, and the full CAD

is the disjunction over all such cells, as needed.

Note that this also follows from the distributivity of conjunction over disjunction for an arbitrarily

indexed family of sets: e.g., see Monk [1969, Theorem 5.21].

Example 2.21. Consider two simplices α1,1+α1,2+α1,3 = 1 and α2,1+α2,2+α2,3 = 1. The CAD

of their conjunction is:

α1,1 = 0

α1,2 = 0

α1,3 = 1

α2,1 = 0 0 < α2,1 < 1 α2,1 = 1

0 < α1,2 < 1

α1,3 = 1 − α1,2

S

α1,2 = 1

α1,3 = 0

S

0 < α1,1 < 1

α1,2 = 0

α1,3 = 1 − α1,1

S

0 < α1,2 < 1 − α1,1

α1,3 = 1 − α1,1 − α1,2

S

α1,2 = 1 − α1,1

α1,3 = 0

S

α1,1 = 1

α1,2 = 0

α1,3 = 0

S

S

where S represents the CAD of the second simplex, α2,1 + α2,2 + α2,3 = 1, shown partially on the

leftmost branch, which has identical structure to the CAD of the first simplex.

The intuition of the preceding corollary is that because each simplex is independent, we can

simply copy and conjunct them together. For example, if we have two simplices, take each cell in

the first simplex, and attach a copy of the second simplex. This leads to a bound on the size of the

CAD of simplices.

Corollary 2.22. The number of cells in a CAD of the conjunction of ϕ simplices, where the ith

simplex has τi variables, is O(3
∑ϕ
i=1 τi) = O(3ϕmaxi τi).

Proof. The CAD of a single simplex has at most 3 children at each level, except at the last level where

it definitely has one. So the number of cells for the ith simplex is O(3τi−1) = O(3τi). Then, if we

conjunct ϕ simplices together, we multiply the number of cells: O(3τ1 × 3τ2 · · ·× 3τϕ) = O(3
∑ϕ
i=1 τi).

Since each τi ≤ max1≤j≤ϕ τj , we also have the bound O(3ϕ·maxj τj).

In general, the size of a CAD is doubly exponential in the number of variables, whereas for special

case of simplices it is singly exponential: the savings are due to the geometry of the simplex and the

assumption of their disjointness.

Simplex-extensibility: Lifting the simplex CAD to include f∗

The previous section showed that it was easy to construct a CAD for a set of simplices. Now, we

wish to lift the CAD to include f∗. The method of incremental CAD, which we discussed in the

literature review, applies here. In the general case, it requires significant computation, due to the

many possibilities of how CADs can interact. Therefore, we focus on characterizing conditions on

f∗ such that extending the simplex CAD is easy.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 24

Suppose we repeatedly apply a projection operator to the set F of polynomials that make up our

system (M) to eliminate all x-type variables. Then, we are left with a projection factor set F ′, where

each f ∈ F ′ is a polynomial in the α-type variables. If the CAD of the simplex constraints is also

the CAD of F ′, then we can simply stop the projection phase here and begin the lifting procedure

from the simplex CAD to construct a CAD for the full system. The value of such an approach is

the avoidance of calculating subsequent projection factor sets, which can blow up quickly. Thus, we

wish to characterize the polynomials f∗ such that this is true.

To do so, we will now use the technical lemmas that we introduced in Chapter 2.4.2 which will

help us to apply the Hong projection operator to instances of system (M).

Below, we provide a motivating example that will demonstrate the situation we discussed above.

Example 2.23. Consider the system α1x1 +α2x2− 1 ≥ 0 and α1 +α2 = 1. The set of polynomials

whose atoms form the system are {α1x1 + α2x2 − 1, α1 + α2 − 1}. Iteratively applying the Hong

projection:

• Eliminate x1: {α1, α1x2 − 1, α1 + α2 − 1}

• Eliminate x2: {α1, α2, α1 + α2 − 1}

Now, observe that the final projection factor set has the same CAD as the CAD of the simplex

associated with α1 +α2 = 1, so we can lift from it. Specifically, observe that each of the elements of

the projection factor set are sign-invariant in each of the cells.

The sign-invariance property observed in the previous example is crucial to our development.

We call this property simplex-extensible.

Definition 2.24 (Simplex-extensible). An instance of the system (M) is simplex-extensible if the

set of projection factors after eliminating all x-type variables is sign-invariant over each cell in the

CAD of the conjunction of the respective simplex constraints.

Example 2.25. To demonstrate an instance that is not simplex-extensible, take f∗ = x1(α
2
2−α2

1)+

x2α2 − 1, with the simplex constraint α1 + α2 − 1 = 0. If we calculate the projection factor set

after eliminating x1 and x2, we obtain {−1 + α2, α
2
2, α1 + α2 − 1, α2

2 − α2
1} (we omit the details for

brevity). The last polynomial, α2
2 − α2

1, is not sign-invariant on the simplex CAD. For example,

take (α1, α2) = (0.2, 0.8), which satisfies the simplex: at this point, the polynomial is positive. Now

take (α1, α2) = (0.8, 0.2), which also satisfies the simplex and indeed also lies in the same cell in the

simplex CAD (namely the cell 0 < α1 < 1 ∧ α2 = 1− α1): at this point, the polynomial is negative.

Therefore, it is not sign-invariant within a cell of the simplex CAD.

Characterizing the full class of simplex-extensible systems is difficult, as by definition it requires

the repeated application of the Hong projector until all x-type variables are eliminated. However,

using the series of technical lemmas presented in Section 2.4.2, we can derive several special cases

where the characterization is much easier. An important class of polynomials is of the form f∗ =

g0 +
∑η
i=1 xigi, where each function {gi}ηi=0 is a function of the α-type variables, for which we can

easily check its simplex-extensibility.

Theorem 2.26. Let f∗ = g0+
∑η
i=1 xigi, where each function {gi}ηi=0 is a polynomial of the α-type

variables. Then, this system is simplex-extensible if and only if each of {gi}ηi=0 is sign-invariant

over the CAD of the simplex constraints.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 25

Proof. We eliminate the x-type variables in turn. First, if we set xη as the mvar, then for PROJ1,

we copy over the simplex constraints, and for f∗, we keep the ldcf (which is gη) and subtract the ldt

(which is xηgη). For PROJ2, we raise the simplex constraints to the power of one, but we already

have them. So, this yields a projection factor set of {gη, g0+
∑η−1

1 xigi} plus the simplex constraints.

We then similarly eliminate xη−1, which yields the projection factor set {gη, gη−1, g0+
∑η−2

1 xigi}
plus the simplex constraints. Inductively, after eliminating all x-type variables, we are left with {gi}η0
plus the simplex constraints.

By definition, the instance is simplex-extensible if and only if each of these projection factors is

sign-invariant over the simplex CAD. Trivially, the simplex constraints are sign-invariant over the

simplex. Therefore, it is simplex-extensible if and only if each of {gi}η0 are sign-invariant over the

simplex CAD.

Theorem 2.26 captures a general class of f∗, in particular covering the relevant functions for our

Markov reward process context. More general classes of functions that exhibit simplex-extensibility

are provided in Section 2.4.4.

In Example 2.23, a system with f∗ = x1α1 + x2α2 − 1 is simplex-extensible by Theorem 2.26.

Another example is that an instance with f∗ = x1α
2
1 + x2α

2
2 − 1 is simplex-extensible, because

α2
1 and α2

2 are strictly positive except when α1 = 0 (or likewise for α2 = 0), but that is its own

cell. In Example 2.25, since f∗ doesn’t satisfy the property in Theorem 2.26, the system is not

simplex-extensible.

Thus, with a suitably chosen f∗, system (M) is simplex-extensible, which means we can stop

projecting once we have eliminated all x-type variables and begin the lifting phase from the simplex

CAD. Namely, we take sample points from the simplex CAD cells, plug them into the projection

factors, calculate roots, and then lift on the next x-type variable. This now gives us a set of sample

points over which we can evaluate the consistency of the system. We discuss the construction of the

solution formula next.

Solution formula construction

Recall that we can use Algorithm 2 to generate the solution formula for systems that are projection-

definable. Next, we show that our system of interest is projection-definable for a suitably chosen

f∗.

Lemma 2.27. Assume we have an instance of system (M) that is simplex-extensible, with f∗ =

g0 +
∑η
i=1 xigi, where each function {gi}ηi=0 is a polynomial of the α-type variables. Then, this

system is projection-definable.

Proof. First, we already have the solution formula for the simplex CAD, so we need only focus on

the solution formula when lifting to the x-type variables. The set of all projection factors, following

the proof of Theorem 2.26, is:{
gη, g0 +

η−1∑
1

xigi

}⋃{
gη, gη−1, g0 +

η−2∑
1

xigi

}⋃
· · ·

⋃
{gi}η0

= {gi}η0
⋃g0 +

η−i∑
j=1

xigi


η−1

i=1

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 26

We can construct a solution formula from the projection factors as we discussed previously,

by conjuncting atoms in accordance with the signs of these projection factors. As {gi}η0 are sign-

invariant over each cell, due to simplex-extensibility, it is redundant to include them. Secondly,

atoms formed from the following set: g0 +
η−i∑
j=1

xigi


η−1

i=1

are linear in the respective xi, hence have at most one root over the cell that we are lifting from,

so that the sign of the projection factor uniquely determines a region. Therefore, this system is

projection-definable.

Given Lemma 2.27, we can specialize Algorithm 2 to system (M). We can also specialize Al-

gorithm 1 with knowledge of the specific projection factors associated with the simplex constraints

and the structure of f∗. Algorithm 3, combines the specialized versions of Algorithms 1 and 2,

outputting the solution formula for any instance of (M) with f∗ = g0 +
∑η
i=1 xigi.

Algorithm 3 Constructing the CAD solution formula of an instance of system (M) with f∗ =
g0 +

∑η
i=1 xigi

Require: A simplex-extensible instance of system (M) with f∗ = g0 +
∑η
i=1 xigi

Ensure: A CAD solution formula
1: for each simplex constraint in the instance of system (M) do
2: Construct the CAD according to Theorem 2.18, storing sample points
3: end for
4: cells ← conjunction of the simplex CADs according to Corollary 2.20
5: for xi in {xi}ηi=1 do
6: cells new ← cells
7: for each cell in cells do
8: sample ← sample point of cell
9: if gi = 0, evaluated at sample then

10: Add the cell xi ≥ 0 as a child of cell with a sample point, in cells new
11: else
12: ri ← −(g0 −

∑i−1
j=1 xjgj)/gi evaluated at sample

13: if ri ≤ 0 then
14: Add the cell xi ≥ 0 as a child of cell, with a sample point, to cells new
15: else
16: Add cells xi = 0, 0 < xi < ri, xi = ri, and xi > ri as children of cell, with their

sample points, in cells new
17: end if
18: end if
19: end for
20: cells ← cells new
21: end for
22: for each cell in cells do
23: Evaluate the system using its sample point
24: if the instance of system (M) does not hold then
25: Delete cell
26: end if
27: end for
28: return cells

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 27

Line 12 of Algorithm 3 is the key step that leverages the structure of f∗ to construct the CAD

efficiently. At the level of a particular xi, there is only one projection factor, which has a unique

root (see proof of Theorem 2.26):

ri =
−g0 −

∑i−1
j=1 xjgj

gi
.

The result is that there will be no more than four new cells created at each level of the x-type

variables (line 16). This observation directly leads to a bound on the size of the CAD tree, and the

result that the tree is smaller than the size of a CAD of a general polynomial system with the same

number of variables and constraints.

Corollary 2.28. Assume we have an instance of system (M) that is simplex-extensible, with f∗ =

g0 +
∑η
i=1 xigi, where each function {gi}ηi=0 is a polynomial of the α-type variables. Then, the

number of cells in its CAD is O(3
∑ϕ
i=1 τi × 4η).

Proof. The number of cells of the simplex CAD is as per Corollary 2.22. After the simplex CAD,

each level has at most 4 cells, so 4η cells for the x-type variables over each cell of the simplex

CAD.

Corollary 2.29. Let the number of cells of an instance of system (M), under the assumptions of

Corollary 2.28, be NM , and the number of cells in the CAD of a general polynomial system with the

same number of variables and constraints be N . Then, NM = o(N).

Proof. The number of variables in our system is η+
∑ϕ

1 τi, the number of polynomials is ϕ+1 (the ϕ

simplices plus f∗). We let the maximum degree (over all variables, over all polynomials) be denoted

as d: note that in this corollary we assume that f∗ is linear in the x-type variables, but we make

no assumptions on the degree of the α-type variables, so we simply denote it as d. Based on the

complexity analysis in England et al. [2015], the dominant term of the bound of the number of cells

of a general CAD, N , substituting our values, is:

(2d)2
η+

∑ϕ
1 τi−1(ϕ+ 1)2

η+
∑ϕ

1 τi−122
η+

∑ϕ
1 τi−1−1

Whereas when solving with the methods we have developed, we have the bound on NM :

3
∑ϕ
i=1 τi × 4η < 4η+

∑ϕ
i=1 τi

For simplicity of notation, let ψ = η +
∑ϕ
i=1 τi. Then, we will prove that 4ψ = o(22

ψ−1−1).

Consider the following ratio:

4ψ

22ψ−1−1
=

22ψ

22ψ−1−1
= 22ψ−2ψ−1+1

As ψ → ∞, the exponent becomes large and negative, so that the term itself goes to 0. So,

4ψ = o(22
ψ−1−1). Hence, by properties of little-o, NM = o(N).

More concretely, while the size of a general CAD is doubly exponential in size, the size of this

CAD is only singly exponential. While this is a significant reduction theoretically, we may still

consider this complexity to be too high for practical purposes. However, any tree data structure

with a constant number of children for each node will have a total number of nodes that is singly

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 28

exponential in the number of levels of the tree. Lastly, we show that even deciding feasibility of our

system (let alone enumerating the full tree), even in the simplex-extensible case, is NP-hard. The

proof is via reduction from 3-SAT.

Theorem 2.30. Consider the decision problem of deciding the feasibility of an instance of system

(M) that is simplex-extensible, with f∗ = g0+
∑η
i=1 xigi, where each function {gi}ηi=0 is a polynomial

of the α-type variables. This problem is NP-hard. Hence, deciding the feasibility of a general instance

of system (M) is NP-hard.

Proof. Suppose we have an instance of 3-SAT, i.e., Boolean satisfiability with three literals in each

clause, with m clauses. We refer the reader to Papadimitriou and Steiglitz [2013] for full details on

the definition of 3-SAT. We first exhibit a reduction to a simplex-extensible instance of system (M)

with f∗ = g0 +
∑η
i=1 gi.

For each Boolean variable zi the 3-SAT instance, introduce variables αi,1 (representing zi being

true) and αi,2 (representing zi being false), with the constraints that 0 ≤ αi,1, αi,2 ≤ 1 and αi,1 +

αi,2 = 1. Note that this means that in the context of system (M), we have ϕ equaling the number

of Boolean variables, and τ = 2 for each simplex. With these α variables, form the polynomial

f1 =
∑ϕ
i=1

∑2
j=1 αi,j(1 − αi,j). Observe that f1 = 0 if and only if all of the α-type variables are

either 0 or 1.

Next, take a clause Ci = (ℓi,1, ℓi,2, ℓi,3) in the 3-SAT instance. Define the term Ii,j which is

1− αk,1 if ℓi,j = zk or αk,1 if ℓi,j = ¬zk. So, for each clause Ci, form the product Ii,1Ii,2Ii,3, which

is clearly 0 if at least one of the constituent α variables is 0, i.e., if at least one of the respective z

variables is 1 – in other words, it is 0 if and only if the clause Ci is true. Then, we take the sum over

all clauses, forming the polynomial f2 =
∑m
i=1 Ii,1Ii,2Ii,3. Hence, f2 = 0 if and only if all clauses are

true.

Finally, form the following polynomial inequality:

f∗ := −


ϕ∑
i=1

2∑
j=1

αi,j︸ ︷︷ ︸
f1

+

m∑
i=1

Ii,1Ii,2Ii,3︸ ︷︷ ︸
f2

 ≥ 0

We now have an instance of system (M). We may observe that there are no x-type variables

here: we can vacuously add them to f∗ as, e.g., by adding x − x; this will have no effect on our

construction. All the α variables are continuous between 0 and 1, and lie on disjoint simplices.

This f∗ is indeed in the form g0 +
∑0
i=1 gixi. As there are no x terms, we can simply set g0 = f∗.

Furthermore, as both f1 and f2 are non-negative, then g0 is sign-invariant. Hence, this system is

simplex-extensible.

We now have to show that this reduction is valid. First, suppose we have a satisfying assignment

of the z variables to the 3-SAT instance. This implies that all of the α variables are either 0 or 1, by

construction, so f1 = 0, and due to all clauses being true we have f2 = 0. So, f∗ = −(0+0) = 0 ≥ 0.

So, the instance of system (M) is feasible.

Secondly, suppose we have a feasible solution to the instance of system (M). Since f1, f2 ≥ 0

always, we have that f∗ ≤ 0 always. So, with a feasible solution, we have f∗ ≤ 0 and f∗ ≥ 0, so

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 29

f∗ = 0. This implies that both f1 = 0 and f2 = 0. If f1 = 0, all the α variables are either 0 or

1, meaning we can form valid Boolean variables z from them. Secondly, if f2 = 0, we also have a

satisfying assignment to the 3-SAT instance.

Hence, the constructed instance of (M) is feasible if and only if the original instance of 3-SAT is

satisfiable. The NP-hardness of simplex-extensible (M) with f∗ = g0+
∑η
i=1 gi and the NP-hardness

of general (M) follow.

Remark 2.31. Note that the construction of f2 above uses very common techniques that are used

to show complexity of polynomial systems. In an arbitrary polynomial system, we can fix the α

variables to be binary by introducing the constraint α(α − 1) = 0. However, we cannot introduce

additional constraints when forming system (M). We get around this by incorporating the constraints

implicitly into f∗, so that the α still end up being constrained to be binary.

Remark 2.32 (Unsigned x-type variables). Algorithm 3 applies to the case where the x-type variables

are free, with slight modifications to lines 10, 14, and 16. Theorem 2.26 and Lemma 2.27 also hold

because the sign of x does not affect the sign-invariance of the gi functions, since the latter are

functions of only the α-type variables.

The following example illustrates a CAD tree built using Algorithm 3.

Example 2.33. Let f∗ = α1x1 + α2x2 + α3x3 − 1, with f∗ ≥ 0, α1 + α2 + α3 = 1, 0 ≤ αi ≤ 1, and

xi ≥ 0 for i = 1, 2, 3. A partial CAD (only over the cell 0 < α1 < 1, for brevity) is given below.

0 < α1 < 1

α2 = 0

α3 = 1 − α1

0 ≤ x1 <
1
α1

x2 ≥ 0

x3 ≥ 1−α1x1
α3

x1 ≥ 1
α1

x2 ≥ 0

x3 ≥ 0

0 < α2 < 1 − α1

α3 = 1 − α2 − α1

0 ≤ x1 <
1
α1

0 ≤ x2 <
1−α1x1
α2

x3 ≥ 1−α1x1−α2x2
α3

x2 ≥ 1−α1x1
α2

x3 ≥ 0

x1 = 1
α1

x2 ≥ 1−α1x1
α2

x3 ≥ 0

x1 >
1
α1

x2 ≥ 0

x3 ≥ 0

α2 = 1 − α1

α3 = 0

0 ≤ x1 <
1
α1

x2 ≥ 1−α1x1
α2

x3 ≥ 0

x1 >
1
α1

x2 ≥ 0

x3 ≥ 0

Extensions: Increasing failure rate

The increasing failure rate (IFR) property is an important property of transition probability matrices

in many healthcare and engineering applications [Barlow and Proschan, 1996]. It captures the notion

that in worse health states, a patient (or machine) is more likely to degrade. More precisely, the

rows of the transition probability matrix are in increasing stochastic order. We consider a Markov

chain with ϕ states, so ϕ unit simplices, each with ϕ variables: {αi,j , i ∈ [ϕ], j ∈ [ϕ] |
∑ϕ
j=1 αi,j =

1, 0 ≤ αi,j ≤ 1, i ∈ [ϕ], j ∈ [ϕ]}.

Definition 2.34 (Increasing failure rate (IFR) [Alagoz et al., 2007]). Consider ϕ unit simplices as

above. This set of simplices is said to be IFR if, for each h ∈ [ϕ], we have that
∑ϕ
ℓ=h αi,ℓ, as a

function of i, is nondecreasing in i, where i ∈ [ϕ].

The IFR condition introduces a series of linear inequalities as constraints on the simplices. These

inequalities span across multiple simplices, so the constraints are not disjoint in the simplex vari-

ables anymore. Thus, we cannot use the prior argument to conjunct them to construct the CAD

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 30

for the set of simplices. However, we can still efficiently construct a CAD for a set of simplices

with the IFR property. Our strategy will be to construct the full CAD in the usual variable or-

dering: α1,1, . . . , α1,ϕ, α2,1, . . . , α2,ϕ, . . . , αϕ,1, . . . αϕ,ϕ. By manipulating the inequalities in the IFR

definition, we can characterize each α variable in terms of the preceding variables in this ordering.

Theorem 2.35. Consider a set of ϕ unit simplices, each with ϕ states, {αi,j , i ∈ [ϕ], j ∈ [ϕ] |
∑ϕ
j=1 αi,j =

1, 0 ≤ αi,j ≤ 1, i ∈ [ϕ], j ∈ [ϕ]}. Also, fix the variable ordering α1,1, α1,2, α1,3, · · · , α1,ϕ, α2,1, · · · , α2,ϕ, · · ·αϕ,ϕ.
If this set of simplices is IFR, their CAD is:

• For each i, the cells for αi,j, for j < ϕ are the cells 0, (0,
∑j
ℓ=1 αi−1,ℓ−

∑j−1
ℓ=1 αi,ℓ),

∑j
ℓ=1 αi−1,ℓ−∑j−1

ℓ=1 αi,ℓ.

• The singular cell for αi,ϕ for each i is {1−
∑ϕ−1
ℓ=1 αi,ℓ}.

• If i = 1, then we replace
∑j
ℓ=1 αi−1,ℓ with 1.

• The tree propagates any equality constraints on preceding variables in the current cell.

Proof. First, from the definition of IFR, we can write that, for a given h ∈ [1, ϕ], we have:

ϕ∑
ℓ=h

α1,ℓ ≤
ϕ∑
ℓ=h

α2,ℓ ≤ · · · ≤
ϕ∑
ℓ=h

αϕ,ℓ

⇐⇒ 1−
h−1∑
ℓ=1

α1,ℓ ≤ 1−
h−1∑
ℓ=1

α2,ℓ ≤ · · · ≤ 1−
h−1∑
ℓ=1

αϕ,ℓ

⇐⇒
h−1∑
ℓ=1

α1,ℓ ≥
h−1∑
ℓ=1

α2,ℓ ≥ · · · ≥
h−1∑
ℓ=1

αϕ,ℓ

Note that when h = 1, the inequalities are just 1 ≤ · · · ≤ 1, which adds no information.

For the αi,j variables for i = 1, we have the usual characterization that α1,1 ∈ [0, 1], α1,2 ∈
[0, 1− α1,1], and so on, until α1,ϕ = 1− α1,ϕ−1 − α1,ϕ−2 − · · · − α1,1.

For αi,j , i > 1, from the inequalities in the IFR definition when h = j + 1, we get that:

j∑
ℓ=1

αi−1,ℓ ≥
j∑
ℓ=1

αi,ℓ

⇐⇒ αi,j ≤
j∑
ℓ=1

αi−1,ℓ −
j−1∑
ℓ=1

αi,ℓ

Recall that the usual bound αi,j ≤ 1−
∑j−1
ℓ=1 αi,ℓ. Since

∑j
ℓ=1 αi−1,ℓ ≤ 1, the above is a stricter

bound than we would have without the IFR constraint. Also, this provides an exact characterization

of αi,j in terms of the α-variables that precede it in our variable ordering.

Lastly, as implied by row-stochasticity, we must have αi,ϕ = 1−
∑ϕ−1
ℓ=1 αi,ℓ. The CAD decompo-

sition follows.

Remark 2.36. The intuition in the bounds on α variables implied by the CAD is that if we write

out the α variables in a matrix, a given αi,j is bounded from above by the sum of the α variables in

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 31

the preceding row (row i − 1) up to the jth column, minus the sum of the α variables in the same

row (row i) up to the j − 1th column. So, αi,j is larger if the probabilities in the row above it and

to the left are larger, in order to fulfill IFR, and is smaller if the probabilities in the same row but

precede it are larger, in order to fulfill row-stochasticity.

Example 2.37. Suppose we have two simplices α1,1 + α1,2 = 1 and α2,1 + α2,2 = 1, and they are

IFR. Its CAD is:

α1,1 = 0

α1,2 = 1

α2,1 = 0

α2,2 = 1

0 < α1,1 < 1

α1,2 = 1 − α1,1

0 ≤ α2,1 ≤ α1,1

α2,2 = 1 − α2,1

α1,1 = 1

α1,2 = 0

0 ≤ α2,1 ≤ 1

α2,2 = 1 − α2,1

We have merged some cells for brevity. The important difference to note here is how the cells for

α2,1 depend on α1,1, in order to satisfy IFR.

Importantly, adding the IFR property does not affect simplex-extensibility of system (M).

Lemma 2.38. If an instance of (M) is simplex-extensible, then the same system with the additional

requirement of IFR remains simplex-extensible.

Proof. If an instance of (M) is simplex-extensible, then the same system with the additional require-

ment of IFR remains simplex-extensible.

Extensions: Other forms of f∗

Thus far, we have focused on f∗ that are linear in the x-type variables. We now generalize our

previous result by allowing for functions of the x-type variables, i.e., f∗ = g0 +
∑η
i=1 figi, where fi

is a polynomial of xi. The main challenge is in keeping track of the projection factors. However, we

can generalize it for some polynomials. If, for each i, the polynomial fi has no non-negative roots,

i.e., it is sign-invariant over xi > 0, then all the useful properties about simplex-extensibility and

projection-definability carry over.

Corollary 2.39. Let f∗ = g0 +
∑η
i=1 figi, where each function {fi}ηi=1 is a univariate polynomial

of xi, and {gi}ηi=0 is a (possibly multivariate) polynomial of the α-type variables. If, for each i,

fi has no non-negative roots, then f∗ is simplex-extensible if and only if each of {gi}ηi=0 are sign-

invariant over the simplex CAD. Furthermore, if (M) is simplex-extensible with such an f∗, it is

also projection-definable.

Proof. If a polynomial has no non-negative roots, it is sign-invariant over the non-negative reals.

So, for each i, substitute zi = fi if fi is positive or zi = −fi if fi is negative, and treat as a

system with zi, noting that zi ≥ 0. The simplex-extensibility follows from Theorem 2.26 and the

projection-definability follows from Lemma 2.27. Then, build the CAD and substitute fi for zi at

the end.

Some special cases captured by the preceding corollary are when fi is a monomial with arbitrary

exponent, when fi has all positive coefficients, or when fi has all negative coefficients, which is

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 32

implied by Descartes’ rule of signs. There are other such fi as well, which can be easily identified

by root-counting algorithms like Sturm sequences [Basu et al., 2006].4

Since polynomials with higher order terms require significant computation to compute projection

factors, this corollary is valuable because it allows us to easily check simplex-extensibility for systems

where f∗ has higher order terms in the x-type variables.

Example 2.40. Let f∗ = α1(x
2
1 + x31) + α2x2 + α3x3, with α1 + α2 + α3 = 1. If we tried to check

for simplex-extensibility by fully computing the projection factors, we would get 13 projection factors

when eliminating x1, 85 when eliminating x2, and 751 when eliminating x3. However, with Lemma

2.39 we can easily see that f∗ is simplex-extensible.

The challenge with generalizing to general univariate polynomials (i.e., with non-negative roots)

of x-type variables is that, when projecting on a given x-type variable, we will generate multiple

projection factors in the other x-type variables, which makes keeping track of projection factors in

subsequent steps onerous. This is unlike the case in Theorem 2.26, where only a single projection

factor in the other x-type variables is generated, which keeps the subsequent projection factors

simple to compute. Indeed, the technical lemmas in Section 2.4.2 exploit this property. Also, in

general, projection-definability is not guaranteed either, due to the possibility of multiple roots.

The situation is even more difficult if attempting to generalize to multivariate polynomials of the

x-type variables. This form does not provide any special structure, as indeed any f∗ can be written

as f1g1 + f2g2 + · · · , where the f functions are multivariate polynomials of the x-type variables and

the g functions are multivariate polynomials in the α-type variables, simply by taking the individual

monomials of f∗.

Fortunately, Theorem 2 provides significant generality already, as it applies to all the relevant

sensitivity analyses that we introduced in this chapter. We now return to that context to demonstrate

how our results for system (M) apply to our motivating problem.

2.5 Application to Markov Reward Processes

As we discussed at the start of Section 2.4.4, system (M) is a general class that contains the poly-

nomial systems associated with our sensitivity analyses of interest. We formalize this result next.

Theorem 2.41. Let R∞ be defined as in (2.3) and γ ∈ R. Then the system R∞ ≥ γ with row-

stochastic constraints on P and π, and non-negativity constraints on r:

1. is an instance of system (M)

2. is simplex-extensible,

3. is projection-definable, and

4. has a solution formula that can be constructed via Algorithm 3.

Proof. Letting f∗ := π⊤ adj (I− λP)r − γ det (I− λP), R∞ ≥ γ is equivalent to f∗ ≥ 0, so the

system is an instance of (M). The function f∗ can be written in the form g0 +
∑η
i=1 xigi by setting

4Writing out the solution formula for such polynomials may introduce difficulties because of having to represent
the roots of high-degree univariate polynomials in the CAD tree. This is an issue that should be handled by the
computer algebra system so we do not discuss this further here.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 33

g0 = −γ det (I− λP), xi = ri, and gi as the ith entry of π⊤ adj (I− λP). Since det (I− λP) > 0

(Lemma 2.1) and γ is fixed, g0 is sign-invariant over the simplex CAD. Similarly, since adj(I−λP) is

component-wise non-negative (Lemma 2.1), each gi is non-negative and therefore sign-invariant over

the simplex CAD. Thus, the system is simplex-extensible by Theorem 2.26 and projection-definable

by Lemma 2.27, and Algorithm 3 can be used to construct its CAD solution formula.

Several remarks follow about the generalizability of this result.

Remark 2.42 (Finite-horizon reward). The same result holds for the finite-horizon reward with

inequality Rt ≥ γ. We set f∗ = Rt− γ, which is of the form f∗ = g0 +
∑η
i=1 xigi with {gi}

η
i=1 being

the entries in
∑t
m=0 π

⊤λmPm, per equation (2.1), which are clearly polynomials in π and P. Each

of these polynomials are formed by the addition of monomials in π and P, and so are non-negative.

As well, g0 = −γ, which is a constant so is sign-invariant. The results follow by invoking Theorem

2.26 and Lemma 2.27.

Remark 2.43 (Other cost-effectiveness quantities). By suitably defining f∗, Theorem 2.41 extends

to other sensitivity analyses of interest.

• For comparing the infinite-horizon rewards of two interventions, labeled a and b, the form

of the inequality in (2.7) implies that f∗ = π⊤
a adj(I − λPa)ra det(I − λPb) − π⊤

b adj(I −
λPb)rb det(I − λPa), and the {gi}ηi=1 are the entries in π⊤

a adj(I − λPa) det(I − λPb) and

−π⊤
b adj(I − λPb) det(I − λPa), which are sign-invariant by similar arguments in the proof

above.

• When bounding the NMB, by rearranging equation (2.8) we set f∗ = π⊤ adj(I − λP)(Wb −
c)− γ det(I− λP). Note that the x-type variables are now the elements of b and c.

• When bounding the ICER of two interventions a and b, we can similarly rearrange (2.9) to

obtain a suitable f∗, with the x-type variables being the costs and benefits of each intervention.

Lastly, we note that a benefit of taking the CAD perspective is that we can characterize the exact

shape of the boundary defined by any of the cost-effectiveness inequalities of interest as a function of

π P, and/or r. For example, we can fully characterize the geometry of two-way sensitivity analyses,

which we do below.

2.5.1 Geometry of Two-Way Sensitivity Analysis

The formulations of the total reward inequalities allow us to formalize some facts about the geometry

of a two-way sensitivity analysis in a general Markov reward process. Suppose we assert R∞ ≥ γ,

which can be reformulated as the inequality f∗ ≥ 0, where f∗ is a multilinear polynomial in the

Markov chain’s parameters. Since f∗ is multilinear, if we fix all but two of the parameters, what

remains is a polynomial that is either linear (i.e., no variables being multiplied together) or bilinear

(i.e., contains a term where both variables are being multiplied together). If it is linear, then the

solution to the inequality is a half-plane. If it is bilinear, then the boundary of the solution to the

inequality is a hyperbola, and the valid space is one of the sides of this hyperbola. Depending on

the shape of the hyperbola and which side the solution lies – which depends on the values of the

fixed parameters – the solution is either convex or concave.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 34

Table 2.1: Geometry of two-way sensitivity analysis of the infinite horizon reward of a Markov
reward process

Free parameters Form of f∗ Valid parameter space

Both from r Bivariate linear Half-plane
One from r, one from π or P Bilinear or bivariate linear One side of hyperbola or half-plane
Both from π or P
— On same simplex Univariate linear Line segment
— Same column of P Bivariate linear Half-plane
— Otherwise Bilinear or bivariate linear One side of hyperbola or half-plane

We can discuss these cases more specifically by analyzing which types of parameters are chosen

to vary. If both are rewards, then f∗ is a linear function, and so the valid parameter space is a half-

plane. If one variable is a reward, and another is an entry in π or P, then f∗ is (possibly) bilinear,

due to the two variables being multiplied together. Therefore, the boundary of the valid parameter

space is a rational function, and the valid parameter space lies below or above this space. Hence,

depending on the boundary and which side of the boundary is valid, we can get a convex region or a

concave region. Note that if there is only a single free entry in π or P, then it is uniquely identified

by the other entries due to the stochastic constraints, so this would reduce to a one-way sensitivity

analysis. Hence, for a two-sensitivity analysis to be meaningful, we want this free parameter to be

bound by an inequality, e.g., if we have π = [x, 1− x].
Lastly, we consider the case where both free parameters are elements of π or P. Firstly note that

if both free parameters lie on the same simplex, i.e., both are from π or both are from the same row

of P, then by simple substitution we can rewrite f∗ as a linear function in only one of the variables,

and solve for its range. Then, on the two-dimensional plane, the set of valid parameter values is

in fact only a line segment. On the other hand, if they do not lie on the same simplex, then f∗ is

bilinear or linear, and the above arguments about the geometry follow. For example, one case where

f∗ is definitely linear is when the two free parameters are elements of P that are in the same column.

Then, for the entry in the adjugate of I − λP corresponding to one of the variables, the other one

will be absent. A similar argument, based on the Laplace expansion definition of the determinant,

applies to det(I− λP) that the two variables will not be multiplied together. We summarize these

cases in Table 2.1.

The geometry of the finite horizon parameter space is almost the same, as the function f∗ is still

linear in the entries of r and linear in the entries of π. However, due to summing exponents of P,

the entries of P appear with exponents (i.e., with degrees higher than 1, unless the reward is only

computed for a single period). So, if an entry from P is chosen, we possibly obtain a polynomial

with degree greater than one – not necessarily a bilinear function as in the infinite horizon case. In

this case, it is difficult to solve exactly for one variable in terms of another, as to do so may require

an arduous expression with radicals. And indeed, it may be impossible if we sum the rewards of the

Markov process for 5 periods or more, due to the Abel-Ruffini Theorem [Ruffini, 1799, Abel, 1824].

However, the boundary is still always either convex or concave, and depending on the shape of the

curve and which side of the curve we are on, the valid parameter space may be non-convex.

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 35

2.6 Software: markovag

We developed a Python package, markovag, available at https://github.com/mmaaz-git/markovag,

that allows practitioners to use CAD for sensitivity analyses. The package uses SymPy [Meurer et al.,

2017], which is a computer algebra system in Python, to perform symbolic algebraic manipulation.

There are two modules.

The first module, markovag.markov, can perform computations with symbolic Markov chains,

i.e., where some of the parameters are variables. It contains functions to parse symbolic matrices from

input files. One can then perform matrix computations on them. The module comes with functions

to symbolically calculate the finite or infinite horizon discounted rewards, as well as the usual health

economic metrics of interest like NMB and ICER. In other words, these functions generate the

polynomials in equations (2.3) – (2.9) and their finite horizon analogues. It also provides plotting

functions to visualize two- and three-way sensitivity analyses.

The second module, markovag.cad, constructs the CAD. It takes polynomials generated by the

first module, appends the necessary stochastic constraints, and builds the CAD tree in accordance

with Algorithm 3. This development is significant from the larger perspective of computer algebra

software, as SymPy currently does not have a CAD solver. In fact, there are only two available im-

plementations of CAD: Mathematica [Wolfram Research, 2020], which is proprietary, and QEPCAD

[Brown, 2003], which is open-source. However, both programs require specific syntax and do not

come with specialized methods for cost-effectiveness analysis. Since markovag is built on Python, it

is freely available and leverages syntax that is widely used.

We also note that the two state-of-the-art satisfiability modulo theories solvers, Z3 [De Moura

and Bjørner, 2008, Jovanović and De Moura, 2013] and CVC5 [Barbosa et al., 2022, Kremer et al.,

2022] both implement CAD. However, they are satisfiability solvers and so only provide a satisfying

point, or indicate that none exist. They do not implement the solution formula construction step.

In other words, they only implement Algorithm 1 but not Algorithm 2.

Although markovag only works for instances of system (M) specifically resulting from Markov

reward processes, our implementation has many of the fundamentals for constructing a general CAD,

including sample point computation and building the tree data structure. Building this out into a

full CAD solver is left to future work.

We now demonstrate a synthetic case study using markovag. Later, in Chapter 4, we will show

a more fulsome case study.

2.6.1 Synthetic Case Study

Consider a three-state Markov chain, where the states represent (1) “healthy”, (2) “sick”, and (3)

“dead”. We set the reward of “healthy” to r1, the reward of “sick” to r2 and the reward of “dead”

to 0. We consider death to be an absorbing state and we compute the infinite horizon expected

total reward per equation (2.10). The total reward is a function of the following five parameters:

p11, p12, p21, p22, r1, r2. Observe that they are not a function of p13 nor p23, i.e., the mortalities of

each state, which is implied by equation (2.10).

https://github.com/mmaaz-git/markovag

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 36

Figure 2.1: Valid parameter space of a n = 3 state Markov chain with states (1) healthy, (2) sick,
(3) dead, as discussed in Section 2.6.1, with the parameters p12 = 0.4, p21 = 0.1, r1 = 1, r2 = 0.5.
We assert that R∞ ≥ 3. Green and red points correspond to the grid search, where green indicates
a valid point and red an invalid one. The green lines form the convex hull of the green points.

Two-way analysis

First, we conduct a two-way sensitivity analysis of the infinite horizon reward. We fix p12 = 0.4, p21 =

0.1, r1 = 1, r2 = 0.5, and let p11 and p22 vary. Given the fixed parameters, we have the implied

bounds p11 ∈ [0, 0.6] and p2,2 ∈ [0, 0.9]. We wish to find the values of p11 and p22 that guarantee

R∞ ≥ 3. Using markovag.markov, we symbolically compute the expected total reward, form the

inequality bounding it, and plot the resulting valid parameter space (Figure 2.1).

Notice that this parameter space is not convex. Without CAD, the traditional approach of using

a fixed parameter grid would require shrinking the grid size to get a good approximation of the

boundary. However, it would not be known a priori how small the grid needs to be to achieve a

desired error. Our exact approach circumvents this issue.

In Figure 2.1, we overlay a grid of lattice points, where green points satisfy the inequality

and red points do not. The naive approach of identifying neighboring grid points that satisfy

the inequality (i.e., cost-effective) may lead to an incorrect conclusion that all convex combinations

of those parameter values also satisfy the inequality.

Another result is that at p11 = 0.3, we can tell from the grid that p22 = 0.8 the inequality is

satisfied by at p22 = 0.7 it is not. So the traditional analysis only knows that the cost-effectiveness

boundary is crossed somewhere in the range [0.7, 0.8], whereas the CAD analysis clearly shows that

the boundary is very close to 0.7.

Multi-way analysis via CAD

To illustrate the power of the CAD approach, we consider an eight-way sensitivity analysis. We

allow all of p11, p12, p13, p21, p22, p23, r1, r2 to vary. The difficulty in searching and visualizing this

high-dimensional grid means that an eight-way analysis is most likely never done in practice. We

once again assert that R∞ ≥ 3. Using the markovag package we construct the CAD tree and restrict

CHAPTER 2. EXACT SENSITIVITY ANALYSIS OF MARKOV REWARD PROCESSES 37

our attention to the full-dimensional cells (cells which are intervals) for the probabilities. We explore

the effect of the probabilities on the permissible rewards, as well as the interaction between the two

rewards r1 and r2. For example, we find that if

r1 ≥
3p11p22 − 3p11 − 3p12p21 − 3p22 + 3

1− p22

then r2 ≥ 0. This result is useful, for example, if the reward for being in the healthy state is

well-known and accepted but the reward for being in the sick state is highly uncertain and patient

dependent. A policymaker only needs to know that if a patient receives a sufficiently high reward for

being in the healthy state, then any reward value in the sick state would still lead to a cost-effective

result. Furthermore, if the reward in state 1 can be written as benefit minus cost, a lower bound on

r1 implies an upper bound on cost, such that if the policymaker can bring the cost of a hypothetical

therapeutic below the bound, then the intervention would be considered cost-effective even without

knowing the exact reward for being in state 2.

Another benefit of our approach is that it immediately elucidates the impact of adding or re-

moving restrictions on the parameter values. For example, the analysis up to now did not include

the IFR condition. Without this condition, the CAD analysis shows that, e.g., p11 = 0.2, p12 = 0.5,

p21 = 0.3, p22 = 0.5, r1 ≥ 1.5, r2 ≥ 0 results in R∞ ≥ 3, suggesting that this combination of param-

eters is associated with a cost-effective intervention. However, with the IFR condition imposed, the

CAD tree would no longer contain this set of parameter values due to the additional restrictions im-

posed on p21 and p22. Lowering p21 to satisfy IFR, e.g., p21 = 0.1, would result in r1 ≥ 2.15, r2 ≥ 0.

This result implies that a higher reward is needed in the healthy state to retain cost-effectiveness.

2.7 Conclusion

In this chapter, we studied the problem of performing sensitivity analysis on metrics that are derived

from Markov reward processes. We were motivated specifically by cost-effectiveness analyses in

healthcare. We showed that every such analysis has an equivalent semialgebraic representation.

Our framework can encompass other common extensions in the healthcare literature, like the IFR

assumption. We then showed that these systems have a special structure which allows us to construct

their CADs in a simpler way. We call this property simplex-extensible, and it is more general than

just the polynomials arising from our study of Markov reward processes. Lastly, we developed

software which allows practitioners to use our approach, and we demonstrated that it finds regions

of cost-effectiveness that are missed by the classical grid search method.

Chapter 3

Formal Verification of Markov

Processes with Learned Parameters

3.1 Introduction

In this chapter, we study systems where machine learning (ML) models are integrated into Markov

models. As ML becomes increasingly integrated into real-world systems, Markov models are evolving

to incorporate heterogeneous, data-driven parameters. For instance, ML models can estimate failure

rates from sensor data or patient-specific transition probabilities based on clinical features [Mertens

et al., 2022]. This gives rise to a new class of Markov processes where parameters are not fixed but

are instead learned functions.

Despite this growing trend, there is limited work on rigorously analyzing such systems. In

healthcare, most studies rely on Monte Carlo simulation [Krijkamp et al., 2018], which supports

subgroup analyses (e.g., patients over 60) but cannot provide formal guarantees – an important

limitation in high-stakes domains like medicine or safety-critical infrastructure.

In this chapter, we present a new framework for the formal verification of Markov processes with

ML-based parameters. Our key insight is that properties of such systems can be encoded as bilinear

programs, allowing us to obtain exact results with formal guarantees. While our primary motivation

is healthcare, the approach generalizes to any application where learned models feed into Markov

processes. This enables us to rigorously answer questions such as: Given a bound on the input, what

is the worst-case probability of reaching a failure state? Is the failure rate for machines with certain

properties guaranteed to remain below 0.01%? For a clinical subgroup, is the expected treatment

cost within a government threshold?

To summarize, our main contributions are:

1. We introduce a general framework for formally verifying properties of Markov processes whose

parameters are given by ML models.

2. We show that for a broad class of models, including linear models, tree ensembles, and ReLU-

based neural networks, verification problems can be expressed as (mixed-integer) bilinear pro-

grams.

38

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 39

3. We develop a novel decomposition and bound propagation method that significantly accelerates

global solution times, outperforming existing solvers by orders of magnitude.

3.2 Related Work

Formal Verification of Markov Processes Probabilistic model checking verifies properties of

systems modeled by Markov chains [Hansson and Jonsson, 1994, Baier and Katoen, 2008], using

tools like PRISM and others [Kwiatkowska et al., 2002, Katoen et al., 2005, Hermanns et al., 2000,

Sen et al., 2005, Younes, 2005, Lassaigne and Peyronnet, 2002]. More recent techniques allow

parameters to be intervals [Sen et al., 2006, Delahaye et al., 2015, Petrucci and van De Pol, 2018],

rational functions [Chen et al., 2013, Junges, 2020, Junges et al., 2024], or distributions [Badings

et al., 2023]. We extend this further by allowing parameters defined by ML models, and release our

own tool, markovml.

Formal Verification of ML Models Formal verification of ML models aims to prove properties

such as robustness or output bounds; a well-known benchmark is ACAS Xu [Owen et al., 2019].

ReLU neural networks can be encoded as satisfiability modulo theories (SMT) or mixed-integer

linear programming (MILP) problems, enabling verification via tools like Reluplex [Katz et al.,

2017], a modified simplex method that spurred substantial follow-up work [Tjeng et al., 2017, Cheng

et al., 2017, Anderson et al., 2020, Tjandraatmadja et al., 2020, Kronqvist et al., 2021, Anh-Nguyen

and Huchette, 2022]. State-of-the-art methods such as α, β-CROWN combine bound propagation,

branch-and-bound, and GPU acceleration [Wang et al., 2021, Zhang et al., 2022b,a, Kotha et al.,

2023]. We leverage these formulations to embed MLmodels directly into our optimization framework.

Formal verification of ML is also related to the field of adversarial ML, which attempts to find

adversarial examples, or to protect against them; see, e.g., Carlini and Wagner [2017].

Bilinear Programming Bilinear programs are NP-hard non-convex quadratic problems in which

the objective or constraints contain bilinear terms [Horst and Pardalos, 2013]. Global optima can

be computed via branch-and-bound [Horst and Pardalos, 2013], aided by convex relaxations like

McCormick’s envelope [McCormick, 1976], and are supported by modern solvers such as Gurobi

[Gurobi Optimization, LLC, 2024]. There are a number of results on relaxations and formulations

for bilinear programs: e.g., if the variables live in two separate polyhedra, the optimum is a vertex

from each polyhedra, so the problem can be rewritten as a MILP [Horst and Pardalos, 2013], or, if

the bilinear program has a bilinear structure, then there is a second-order cone relaxation. However,

our problem does not satisfy these, necessitating a new approach. Moreover, we find that Gurobi’s

default approach performs poorly on our class of problems. In contrast, our method accelerates

solution time by orders of magnitude while still leveraging Gurobi’s global optimality guarantees.

Related Software There exist several tools for probabilistic model checking, which verifies prop-

erties of systems modeled by Markov chains [Hansson and Jonsson, 1994, Baier and Katoen, 2008],

e.g., PRISM and others [Kwiatkowska et al., 2002, Katoen et al., 2005, Hermanns et al., 2000, Sen

et al., 2005, Younes, 2005, Lassaigne and Peyronnet, 2002]. Concurrently, there also exist several

tools for verifying machine learning models, which take a pretrained model and obtain guaranteed

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 40

bounds on outputs, e.g., α, β-CROWN [Wang et al., 2021, Zhang et al., 2022b,a, Kotha et al., 2023],

VeriNet [Henriksen and Lomuscio, 2020, 2021], and Marabou [Katz et al., 2019, Wu et al., 2020].

In the healthcare domain, simulation software like TreeAge [TreeAge Software, 2021] allow for het-

erogeneous parameters of the Markov chain drawn from distributions, but currently only supports

Monte Carlo simulation. Our software is thus the first tool that allows the formal verification of

integrated Markov models and ML models, and, by formulating the problem as an optimization

problem and solving it to global optimality, it provides robust guarantees that simulation cannot.

3.3 Problem Formulation

We have, as in Section 1.5, a Markov chain with n states, with a row-stochastic transition matrix

P ∈ Rn×n, and a stochastic initial distribution vector π ∈ Rn. We may also have a reward vector

r ∈ Rn and form a Markov reward process.

In this chapter, we will study how to verify three commonly computed properties, defined in

Chapter 1.5: reachability, expected hitting time, and total infinite-horizon discounted reward. These

three quantities enable rich analysis of Markov processes and the systems they model. Reachability

can be used to verify the probability of failure in a system. Expected hitting time can be used to

compute the expected time to failure, or life expectancy of a person. Total reward can be used to

compute the resource consumption of a system or total cost of a drug.

We wish to verify these properties, namely finding their maximum or minimum. If the Markov

process’ parameters are fixed, as is common in model checking, these quantities can be computed

exactly by solving a linear system. However, in our case, the parameters are given by ML models,

and so we will formulate an optimization problem to derive bounds on these quantities. As the

three quantities have similar formulations (see their formulas in Chapter 1.5), we will proceed in the

rest of the paper by studying the total reward. It will be easy to modify results for the other two

quantities.

3.3.1 Embedding ML Models

We now consider π,P, r as functions of a feature vector x ∈ Rm, where m is the number of features.

We encode the relationship from x to π,P, r via a set of functions, f1, f2, . . . , fkf , where kf is the

number of functions. Each function fi : Rm → Rℓi for i = 1, 2, . . . , kf takes a feature vector and

outputs a vector θi (e.g., a classifier may output class probabilities for three classes). We concatenate

these vectors to form the output vector θ ∈ Rℓ, where ℓ =
∑kf
i=1 ℓi.

Our key assumption on the functions will be that they are mixed-integer linear representable

(MILP-representable), meaning that the relationship between the inputs and outputs can be ex-

pressed using linear constraints and binary variables. This is a broad class of functions that includes,

e.g., piecewise linear functions (including simple “if-then” rules), linear and logistic regression, tree-

based models, and neural networks with ReLU activations.

It is important to note that in the case of logistic regression and neural network classifiers, there

is a non-linearity introduced by the softmax or logistic function. Typically in the formal verification

literature, it suffices to check the logits, not the actual probabilities. However, in our problem,

we need the probabilities as they are inputs into our Markov process. Practically, we handle this

issue in this work and in our software using Gurobi’s built-in spatial branch-and-bound techniques

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 41

for nonlinear functions – essentially dynamic piecewise linear approximations. Note also that this

framework also includes more exotic types of models like generalized additive models where the

underlying functions are MILP-representable, e.g., sums of trees, as in explainable boosting machines

[Lou et al., 2013].

Next, the output vector θ is linked to π,P and r through affine equalities: π = Aπθ + bπ,

vec(P) = APθ + bP, and r = Arθ + br, for fixed Aπ ∈ Rn×ℓ,AP ∈ Rn2×ℓ,Ar ∈ Rn×ℓ and

bπ ∈ Rn,bP ∈ Rn2

,br ∈ Rn. Note the sizes of the matrices mean that every element of π,P, r

must be bound with an affine equality to θ. In other words, if we fix θ, we can compute π,P, r

exactly. The vec operator vectorizes a matrix, i.e., by concatenating rows into one column vector,

so that vec(P) ∈ Rn2

.

The affine equalities allow for common formulations like one of the parameters equaling an

element of θ, e.g., π1 = θ1. Another common situation is that we have a function that outputs the

probability of transitioning to a specific state (say, a death state in a healthcare model), and the

remaining probability mass is, e.g., distributed uniformly over the remaining states: πn = θ1 and

πi = (1−
∑
j ̸=i θj)/(n− 1) for i ̸= n. Of course, the affine equalities also allow for parameters to be

fixed as constants.

Next, we may have linear inequalities on the parameters: Cππ ≤ dπ, CP vec(P) ≤ dP, and

Crr ≤ dr, for fixed Cπ ∈ Rkπ×n,CP ∈ RkP×n2

,Cr ∈ Rkr×n and dπ ∈ Rkπ ,dP ∈ RkP ,dr ∈ Rkr ,
where kπ, kP, kr are the number of linear inequalities on π, P, and r, respectively.

Linear inequalities are an appropriately general assumption as they arise naturally from fixing

a monotonic ordering on the rewards or the probabilities. In reliability engineering and healthcare,

a common assumption is that of increasing failure rate, which implies a certain stochastic ordering

on the transition probabilities [Barlow and Proschan, 1996, Alagoz et al., 2007]. Effectively, this

introduces a series of linear inequalities on the transition probabilities. See Figure 3.1 for a diagram

of the full pipeline.

Lastly, we assume that the feature vector x lies in a set X ⊆ Rm. We assume that the set X
is mixed-integer-linear representable (MILP-representable), i.e., it can be written as a finite union

of polyhedra [Jeroslow and Lowe, 1984]. This is satisfied by a wide range of sets, including box

constraints, polytopes, and discrete sets. In practice, this may look like, e.g., that we restrict x to

represent the set of patients that are either under 18 or over 65, as this is a union of two intervals.

With these assumptions, we can now formulate the following optimization problem for the total

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 42

Figure 3.1: Example of our pipeline. A feature vector x is passed through different functions, here
a linear regression and a neural network, to obtain the output vector θ, which then determines the
parameters of the Markov process through affine equalities.

infinite-horizon discounted reward:

min/maxπ,P,r,v,x,θ π
⊤v s.t.

v = λPv + r,

θ =
[
θ1,θ2, · · · ,θkf

]⊤
,

θi = fi(x) ∀i ∈ [kf],

π = Aπθ + bπ,

vec(P) = APθ + bP,

r = Arθ + br,

Cππ ≤ dπ,

CP vec(P) ≤ dP,

Crr ≤ dr,

n∑
j=1

Pij = 1 ∀i ∈ [n],

n∑
i=1

πi = 1,

0 ≤ Pij ≤ 1 ∀i, j ∈ [n]× [n],

0 ≤ πi ≤ 1 ∀i ∈ [n],

x ∈ X .

Above, v is a new vector we have introduced, which in Markov process theory would be referred

to as the value function, and often arises in reinforcement learning, which equals v = (I− λP)−1r.

We can easily convert this into a feasibility problem, to find a feasible x, by replacing the objective

function with an inequality, Wmin ≤ π⊤v ≤Wmax. With slight modifications, we can also formulate

reachability and hitting time: the full formulations are in Section 3.5.

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 43

3.4 Solving the Optimization Problem

Under the assumptions that the functions f1, f2, . . . , fkf are MILP-representable and X is MILP-

representable, the optimization problem above is a mixed-integer bilinear program, as we have a

bilinear objective and a bilinear constraint. We will leverage the observation that strong bounds on

variables are crucial for solving bilinear programs, and will derive such bounds by decomposing our

problem and using various results from Markov theory.

Our strategy is as follows: obtain bounds on the elements of θ by solving a series of smaller

MILPs, propagate these bounds to the parameters via the affine equalities, obtain bounds on v

using linear algebra arguments, and then tighten the v bounds using interval matrix analysis.

Bounds on θ For each θi, we minimize and maximize it by solving two smaller MILPs, over the set

X . Namely, for each i ∈ [kf], for each j ∈ [ℓi], solve for min/maxx∈X θi,j s.t. θi = [θi,1, . . . , θi,ℓi] =

fi(x), which are MILPs as X and f1, . . . fkf are MILP-representable.

Bounds on π,P, r We now propagate the bounds on θ to the parameters π,P, r via the affine

equalities.

Lemma 3.1. Let θ ∈ Rℓ be a vector where each component satisfies the bounds θmin
i ≤ θi ≤

θmax
i for all i = 1, 2, . . . , ℓ. Consider an affine transformation defined by y = Aθ + b, where

y ∈ Rk, A ∈ Rk×ℓ, and b ∈ Rk. Then, each component yi of y satisfies bi +
∑ℓ
j=1Aij ·(

θmin
j 1Aij≥0 + θmax

j 1Aij<0

)
≤ yi ≤ bi +

∑ℓ
j=1Aij ·

(
θmax
j 1Aij≥0 + θmin

j 1Aij<0

)
.

Proof. For a given component yi, we can write the transformation as:

yi =

ℓ∑
j=1

Aijθj + bi

for all i = 1, 2, . . . , k.

Each term in the summation depends linearly on θj . If Aij ≥ 0, then Aijθj is maximized at θmax
j

and minimized at θmin
j . Vice versa, if Aij < 0, then Aijθj is maximized at θmin

j and minimized at

θmax
j .

Applying this to all terms in the summation, we get the required bounds.

Bounds on v Next, we derive bounds on v using well-established facts from Markov theory. First,

as v = (I− λP)−1r, we analyze bounds on (I− λP)−1.

Lemma 3.2. Let P be row-stochastic and λ ∈ (0, 1). Then, each element in (I − λP)−1 is in the

interval [0, 1/(1− λ)] and the row sums are all equal to 1/(1− λ).

Proof. Note that the matrix (I − λP) is a (non-singular) M-matrix. By Theorem 2.3 in Chapter 6

of [Berman and Plemmons, 1994], each element of the matrix is non-negative, so is ≥ 0.

Next, consider the row sum of (I − λP)−1 for a row i:
∑
j(I − λP)−1

ij , and then expand into

the Neumann series:
∑
j

∑∞
k=0 λ

k(Pk)ij . We can exchange the order of summation as all terms

are non-negative, and then we have our sum is
∑∞
k=0 λ

k
∑
j(P

k)ij . Every positive integer exponent

of a row-stochastic matrix is also row-stochastic, so
∑
j(P

k)ij = 1, for all k ∈ N. Therefore, this

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 44

simplifies to the geometric series
∑∞
k=0 λ

k, which equals 1
1−λ . As each row sum is 1

1−λ , and each

element is non-negative, each element must also be at most 1
1−λ .

Now we can propagate the above bounds to v.

Lemma 3.3. Let rmin
i ≤ ri ≤ rmax

i . Then, each element in the vector v satisfies γminj r
min
j ≤ vi ≤

γmaxj r
max
j , where γ = 1

1−λ .

Proof. Recall that v = (I − λP)−1r, so vi =
∑n
j=1(I − λP)−1

ij rj . Thus, we can see vi is a positive

linear combination of the elements of r, where the nonnegative weights are from (I − λP)−1 and

sum to 1/(1 − λ). To maximize this combination, we assign all the weight to the maximum upper

bound of r, and to minimize it, we assign all the weight to the minimum lower bound of r. Hence,

we have the required bounds.

Lemma 3.3 provides valid bounds on v. However, these bounds are not tight, as Lemma 3.2

applies to any row-stochastic matrix, and does not take into account the specific element-wise

bounds on P that we derived from Lemma 3.1. In order to derive tighter bounds on v, we need to

incorporate the specific element-wise bounds on P. This is difficult because of the matrix inverse.

In the following section, we show how to solve this problem with interval matrix analysis and hence

derive tighter bounds on v.

3.4.1 Tightening Bounds on v

Interval matrix analysis studies a generalization of matrices (or vectors), where each element is an

interval instead of a real number (see [Neumaier, 1984] for an overview). Equivalently, it can be

viewed as studying the set of all matrices that lie within given intervals. There are easy generaliza-

tions of arithmetic of real numbers to intervals, which can be used to generalize matrix arithmetic to

interval matrices. However, inverting an interval matrix is difficult due to the inherent nonlinearity

of the inverse operation. Consider the equivalent problem of solving a linear system with interval

matrices. The solution set is not rectangular, so cannot be described as an interval matrix. Hence,

we wish to find the interval matrix of smallest radius that contains the solution set, known as the

hull [Neumaier, 1984].

Due to the interval extensions of the basic arithmetic operations, it is possible to generalize the

Gauss-Seidel method, a common iterative procedures for solving linear systems, to interval matrices.

Beginning with an initial enclosure of the solution set, it iteratively refines the intervals and returns a

smaller enclosure of the solution set. We provide a full description of the Gauss-Seidel method below.

The interval Gauss-Seidel method is optimal in the sense that it provides the smallest enclosure of

the solution set out of a broad class of algorithms [Neumaier, 1984].

Gauss-Seidel method for interval matrices

Our exposition here follows section 5.7 of Horáček [2019]. Suppose we have a linear system Ay = b,

where A is an interval matrix and b is an interval vector. The set of y that satisfies this system

is referred to as the solution set. It is in general complicated, so we hope to find a rectangular

enclosure of the solution set. The smallest such enclosure is referred to as the hull of the solution

set.

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 45

Suppose we have an initial enclosure of the solution set, y(0). In general this takes some effort

to obtain, but we obtained this for our specific problems. Then, the interval Gauss-Seidel method

proceeds as follows:

1. For each variable xi, compute a new enclosure of the solution set as:

z
(k+1)
i =

1

Aii

bi −∑
j<i

Aijy
(k+1)
j −

∑
j>i

Aijy
(k)
j


2. Update the enclosure of the solution set: y(k+1) = y(k) ∩ z(k+1).

3. Repeat steps 1 and 2 until stopping criterion is met (either a maximum number of iterations

or the difference in subsequent enclosures is less than some tolerance).

All operations above are interval arithmetic operations. For real intervals, we have: [a, b]+[c, d] =

[a+c, b+d], [a, b]− [c, d] = [a−d, b−c], [a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]. Division

is defined as multiplication by the reciprocal, i.e.,

[a, b]/[c, d] = [a, b] · [1/d, 1/c] = [min(a/c, a/d, b/c, b/d),max(a/c, a/d, b/c, b/d)],

if 0 /∈ [c, d].

Note that the zero division issue is not a concern for us, as the diagonal elements of I − λP,

in the total reward setting, have lower bounds always strictly positive, due to the discount factor

λ ∈ (0, 1). In the reachability and hitting time settings, the diagonal elements of I −Q have lower

bounds always strictly positive, due to the strict substochastic property of Q. In practice, we use a

small numerical offset to handle this.

Applying Gauss-Seidel

Hence, we can apply the Gauss-Seidel method to tighten the bounds on v, as (I − λP)v = r is a

linear system. We use the bounds on P and r from Lemma 3.1 to form the interval matrices, and

for our initial guess, we can use the bounds derived from Lemma 3.3.

Still, Gauss-Seidel is not guaranteed to obtain the hull itself. A well-known sufficient condition

for Gauss-Seidel to obtain the hull is that the matrix in the linear system is an interval M-matrix,

a generalization of the notion of an M-matrix [Berman and Plemmons, 1994] to interval matrices.

Suppose a matrix M is element-wise bounded by Mmax and Mmin. It is an interval M-matrix if

and only if Mmin is a (non-singular) real M-matrix in the usual sense and Mmax has no positive

off-diagonal elements [Neumaier, 1984]. Hence we can prove a necessary and sufficient condition for

I− λP to be an interval M-matrix.

Theorem 3.4. Let P be a row-stochastic matrix bounded element-wise by Pmin ≤ P ≤ Pmax.

Then, I− λP is an interval M-matrix if and only if ρ(Pmax) ≤ 1
λ , where ρ is the spectral radius.

Proof. Let M = I− λP. Clearly, M is bounded element-wise by Mmax = I− λPmin and Mmin =

I− λPmax. The upper bound Mmax has no positive off-diagonal elements, as all of the elements of

Pmax are between 0 and 1. So, the only thing we need to check is that Mmin is an M-matrix.

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 46

From the definition of an M-matrix [Berman and Plemmons, 1994], Mmin is an M-matrix if and

only if 1 ≥ ρ(λPmax) = λρ(Pmax). This completes the proof.

Notably, we only need check the spectral radius of the matrix formed by the upper bounds on

P. There are various conditions that can be used to obtain the necessary bound on the spectral

radius. Since λ < 1, we have 1/λ > 1, so if we can show that the spectral radius of the upper bound

matrix is less than 1, then this automatically implies the condition in Theorem 3.4, and hence that

the Gauss-Seidel method will obtain the hull, i.e., the tightest possible rectangular bounds on v.

This may occur if, for example, the row sums of the upper bounds are ≤ 1.

Example 3.5. Let λ = 0.97, and suppose we have the following bounds on P and r:

P :

[
[0.5, 0.6] [0.2, 0.5]

[0.1, 0.4] [0.5, 0.6]

]
, r :

[
[0, 100]

[0, 100]

]

The bounds on v are:

Initial (Lemma 3.3) After Gauss-Seidel[
[0, 6666.67]

[0, 6666.67]

] [
[39.36, 6666.67]

[104.50, 6666.67]

]

Note that the spectral radius of the upper bound matrix of P is 1.05, which is greater than 1/λ =

1/0.97 ≈ 1.03. So, Gauss-Seidel will not necessarily obtain the hull, as it is not an interval M-matrix,

by Theorem 3.4.

If we slightly tighten the upper bounds on P by changing the upper bound on P2,1 to 0.3, then the

bounds on v are:

Initial (Lemma 3.3) After Gauss-Seidel[
[0, 6666.67]

[0, 6666.67]

] [
[39.37, 4694.80]

[104.50, 3746.86]

]

Indeed, now the spectral radius of the upper bound matrix of P is 0.99, which is less than 1/λ = 1.03,

so by Theorem 3.4, Gauss-Seidel returns the hull. Note the tighter bounds than the prior case.

3.4.2 Solving the Final Optimization Problem

At last, we can assert the bounds found above for π,P, r,v as constraints and solve the full bilinear

program with any out-of-the-box solver. We summarize our procedure in Algorithm 4.

Algorithm 4 Decomposition and bound propagation scheme to optimize the total reward

Input: Instance of the infinite-horizon total reward optimization problem
for i = 1 to kf , j = 1 to ℓi do

Minimize and maximize θi,j over X
end for
Propagate the bounds on θ to π,P, r using Lemma 3.1
Obtain initial bounds on v using Lemma 3.3
Tighten the bounds on v using Gauss-Seidel
Optimize π⊤v with an out-of-the-box solver, with obtained bounds on π,P, r,v as constraints

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 47

Our algorithm works with any standard bilinear or MILP solver, avoiding the need for specialized

branch-and-bound schemes or custom callbacks that require expert implementation. The bound

propagation and Gauss-Seidel are also straightforward to implement. Crucially, our method solves

the problem to global optimality if the underlying bilinear solver can, and so we do not discuss

optimality guarantees further, as, e.g., Gurobi can solve bilinear problems to global optimality.

3.5 Extensions

3.5.1 Reachability, Hitting time, and Feasibility

Our results easily extend to reachability and hitting time, after handling technical details arising

from the invertibility of I−Q. We provide these formulations below and then discuss how to adapt

our solution algorithm to them.

Feasibility of the total infinite-horizon reward

The total infinite-horizon reward feasibility problem can be written as:

∃x s.t.

Wmin ≤ π⊤v ≤Wmax

v = λPv + r,

θ =
[
θ1,θ2, · · · ,θkf

]⊤
,

θi = fi(x) ∀i ∈ [kf],

π = Aπθ + bπ,

vec(P) = APθ + bP,

r = Arθ + br,

Cππ ≤ dπ,

CP vec(P) ≤ dP,

Crr ≤ dr,

n∑
j=1

Pij = 1 ∀i ∈ [n],

n∑
i=1

πi = 1,

0 ≤ Pij ≤ 1 ∀i, j ∈ [n]× [n],

0 ≤ πi ≤ 1 ∀i ∈ [n],

x ∈ X .

where Wmin and Wmax are bounds on the total reward, which may be ±∞.

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 48

Reachability

To reformulate the total reward formulation for reachability to a target state S ⊆ [n] from a set of

transient states T ⊆ [n], T ∩ S = ∅, observe that we can simply make the following substitutions:

π gets replaced with π̃, which is the initial probability over T , P gets replaced with Q, which is P

restricted to T , and r gets replaced with R1, where R is the transition matrix from T to S. Lastly,

there is no more discount rate λ. We also require Q to be strictly substochastic so that it remains

invertible (i.e., the row sums are strictly less than 1), and R and π̃ are now substochastic (i.e., the

row sums are less than or equal to 1). The optimization problem is then:

min/maxπ̃,Q,R,v,x,θ π̃
⊤v s.t.

v = Qv +R1,

θ =
[
θ1,θ2, · · · ,θkf

]⊤
,

θi = fi(x) ∀i ∈ [kf],

π = Aπθ + bπ,

vec(Q) = AQθ + bQ,

vec(R) = ARθ + bR,

Cπ̃π̃ ≤ dπ̃,

CQR[vec(Q) vec(R)] ≤ dQR,

|T |∑
j=1

Qij < 1 ∀i ∈ [|T |],

|S|∑
j=1

Rij ≤ 1 ∀i ∈ [|T |],

|T |∑
i=1

(π̃)i ≤ 1,

0 ≤ Qij < 1 ∀i, j ∈ [|T |]× [|T |],

0 ≤ Rij ≤ 1 ∀i, j ∈ [|T |]× [|S|],

0 ≤ (π̃)i ≤ 1 ∀i ∈ [|T |],

x ∈ X .

With a slight abuse of notation, we still maintain the vector v, but is instead now defined as

v = (I−Q)−1R1. As well, note that the stochastic constraints have been replaced with substochastic

constraints (strict substochastic for Q).

The feasibility problem is:

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 49

∃x s.t.

Wmin ≤ π̃⊤v ≤Wmax

v = Qv +R1,

θ =
[
θ1,θ2, · · · ,θkf

]⊤
,

θi = fi(x) ∀i ∈ [kf],

π̃ = Aπ̃θ + bπ̃,

vec(Q) = AQθ + bQ,

vec(R) = ARθ + bR,

Cπ̃π̃ ≤ dπ̃,

CQR[vec(Q) vec(R)] ≤ dQR,

|T |∑
j=1

Qij < 1 ∀i ∈ [|T |],

|S|∑
j=1

Rij ≤ 1 ∀i ∈ [|T |],

|T |∑
i=1

π̃i ≤ 1,

0 ≤ Qij < 1 ∀i, j ∈ [|T |]× [|T |],

0 ≤ Rij ≤ 1 ∀i, j ∈ [|T |]× [|S|],

0 ≤ π̃i ≤ 1 ∀i ∈ [|T |],

x ∈ X .

Hitting time

The hitting time to a target set S ⊆ [n] from a set of transient states T ⊆ [n], T∩S = ∅ formulation is

extremely similar to the reachability formulation, except that we replace R1 with 1. Hence, R is no

longer a decision variable. Also, now, v is defined as v = (I−Q)−11. Note again the substochastic

constraint on π̃ and the strict substochastic constraint on Q. The optimization problem is:

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 50

min/maxπ̃,Q,v,x,θ π̃
⊤v s.t.

v = Qv + 1,

θ =
[
θ1,θ2, · · · ,θkf

]⊤
,

θi = fi(x) ∀i ∈ [kf],

π̃ = Aπ̃θ + bπ̃,

vec(Q) = AQθ + bQ,

Cπ̃π̃ ≤ dπ̃,

CQ vec(Q) ≤ dQ,

|T |∑
j=1

Qij < 1 ∀i ∈ [|T |],

|T |∑
i=1

π̃i ≤ 1,

0 ≤ Qij < 1 ∀i, j ∈ [|T |]× [|T |],

0 ≤ π̃i ≤ 1 ∀i ∈ [|T |],

x ∈ X .

The feasibility problem is:

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 51

∃x s.t.

Wmin ≤ π̃⊤v ≤Wmax

v = Qv + 1,

θ =
[
θ1,θ2, · · · ,θkf

]⊤
,

θi = fi(x) ∀i ∈ [kf],

π̃ = Aπ̃θ + bπ̃,

vec(Q) = AQθ + bQ,

Cπ̃π̃ ≤ dπ̃,

CQ vec(Q) ≤ dQ,

|T |∑
j=1

Qij < 1 ∀i ∈ [|T |],

|T |∑
i=1

(πT)i ≤ 1,

0 ≤ Qij < 1 ∀i, j ∈ [|T |]× [|T |],

0 ≤ π̃i ≤ 1 ∀i ∈ [|T |],

x ∈ X .

Solving

For reachability and hitting time, the key difference that affects our theoretical results and algo-

rithms is that the matrix Q, which is a submatrix of P restricted to the transient states, is strictly

substochastic, and we don’t have a discount factor λ anymore. This introduces some technical diffi-

culties in guaranteeing invertibility of I−Q. However, all our theoretical results all follow through

with minor modifications.

Lemma 3.6. For a strictly row-substochastic matrix Q with all elements in [0, 1]:

1. The spectral radius of Q is strictly less than 1.

2. The matrix (I−Q) is a (non-singular) M-matrix.

3. The matrix (I−Q)−1 has all non-negative elements.

4. The row sums of (I −Q)−1 are at most 1/(1 − α), where α = maxi
∑
j Qij is the maximum

row sum of Q.

5. Each element of (I−Q)−1 is in the interval [0, 1/(1− α)].

Proof. The row sum of Q is strictly less than 1, so, by a well-known result in linear algebra, the

spectral radius of Q is strictly less than 1. It follows that I − Q is a (non-singular) M-matrix by

the definition of an M-matrix [Berman and Plemmons, 1994], and hence that the inverse has all

non-negative elements by Theorem 2.3 in Chapter 6 of Berman and Plemmons [1994].

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 52

Note that the maximum row sum α is strictly less than 1, so the formula is well-defined. We

use this result to obtain the appropriate initial bounds on v for the reachability and hitting time

formulations.

Corollary 3.7. Given a Markov reachability problem with element-wise bounds on Q and R, as

defined in Section 3.5, the initial bounds on v = (I−Q)−1R1 are:

0 ≤ vi ≤
1

1− α
max
j

∑
k

Rmax
jk

where α = maxi
∑
j Q

max
ij is the maximum row sum of Q.

Proof. First, note that the vector R1 has elements which are the row sums of R. So, for each i,∑
j R

min
ij ≤ (R1)i ≤

∑
j R

max
ij . Next, noting that the row sums of (I−Q)−1 are at most 1/(1− α),

we have, by a similar argument as in the proof of Lemma 3.3, that the upper bound on vi is:

vi ≤
1

1− α
max
j

∑
k

Rmax
jk

For the lower bound, unlike the argument in Lemma 3.3, we don’t know what the row sums of

(I−Q)−1 actually are, so we use the smallest possible row sum, which is 0. So, we have:

vi ≥ 0

Corollary 3.8. Given a Markov hitting time problem with element-wise bounds on Q, as defined in

Section 3.5, the initial bounds on v = (I−Q)−11 are:

0 ≤ vi ≤
1

1− α

where α = maxi
∑
j Q

max
ij is the maximum row sum of Q.

Proof. The bound simply follows from the fact that v is the row sums of (I−Q)−1.

Note, however, that we do not know what the row sums ofQ are, because it is not fixed. However,

in practice, in order to assert the strict row-substochastic property, we use a small numerical offset,

which is what we use in our implementation. Specifically, we set the row sums of Q to be at most

1− ϵ, where ϵ is by default set to 10−6 in our software implementation. Based on this, we can set α

to be 1− ϵ.
Next, we can tighten the bounds on v by forming the appropriate linear systems: (I−Q)v = R1

for reachability and (I−Q)v = 1 for hitting time. In both cases, though Q is a submatrix of P, it

is square, so we can analyze the similar interval M-matrix condition for the Gauss-Seidel method to

achieve the hull of the solution set.

Corollary 3.9. Let Q be a row-substochastic matrix bounded element-wise by Qmin and Qmax.

Then, it is an interval M-matrix if and only if ρ(Qmax) ≤ 1.

Proof. The proof is identical to that of Theorem 3.4, but without the discount factor.

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 53

Based on the above extensions of our theoretical results, we now have similar algorithms for

reachability and hitting time. As usual, we first optimize for bounds on θ, then we propagate to Q

and R (if applicable), obtain initial bounds on v as above, and then apply the Gauss-Seidel method

to tighten the bounds on v.

Our method easily extends to the feasibility version of all three problems. We still obtain all

the necessary bounds as in the optimization version. At the end, when we would optimize for the

quantity of interest, we simply check if the overall problem is feasible, given the bounds on the

quantity of interest.

3.5.2 Special Cases

If one or more of π,P, r are fixed, then the problem may become much easier to solve. For example,

if P and r are fixed, then v is completely determined as the solution to a linear system, so we can

eliminate the Bellman constraint, and the objective becomes simply linear in π. We enumerate all

of these possibilities below.

Table 3.1: Special Cases for Optimization Problem. Objective refers to the objective π⊤v and
constraint refers to the Bellman constraint v = λPv + r.

Fixed Variable(s) Objective Constraint Explanation
π Linear Bilinear Only objective affected
P Bilinear Linear Only constraint affected
r Bilinear Bilinear Constraint affected but bilinear term remains

π,P Linear Linear Objective and constraint affected
π, r Linear Bilinear Objective and constraint affected, but bilinear term

remains
P, r Linear Eliminated v fully determined, leaving objective linear in π

3.6 Software: markovml

We developed the Python package markovml to specify Markov chains or reward processes with

embedded pretrained machine learning models. It is available at https://github.com/mmaaz-git/

markovml. In this section, we describe aspects of its implementation and provide a walk-through of

how it can be used.

Most notably, it provides a domain-specific language lets users: (1) instantiate a Markov process,

(2) add pretrained ML models from sklearn [Pedregosa et al., 2011] and PyTorch [Paszke et al.,

2019], (3) link model outputs to Markov parameters with affine equalities, (4) include extra linear

inequalities, (5) specify the feature set with MILP constraints, and (6) optimize reachability, hitting

time, or total reward.

Our package is built on the optimization solver Gurobi, specifically its Python interface, gurobipy

[Gurobi Optimization, LLC, 2024]. As the user sets up their model, our software constructs, in the

background, the equivalent formulation in Gurobi. We also then directly leverage Gurobi’s ability

to solve bilinear programs to global optimality (our decomposition scheme also calls out to Gurobi’s

solver).

https://github.com/mmaaz-git/markovml
https://github.com/mmaaz-git/markovml

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 54

3.6.1 Supported Models

Our package supports a variety of regression and classification models, including linear, tree-based,

and neural networks. For some models, the MILP formulation is provided by gurobi-machinelearning

[Gurobi Optimization, 2024], a Python package built on top of gurobipy which embeds pretrained

ML models into a Gurobi model, while for others, we implemented the MILP formulation ourselves.

We support the following models from sklearn:

• LinearRegression

• Ridge

• Lasso

• LogisticRegression

• DecisionTreeRegressor

• DecisionTreeClassifier

• RandomForestRegressor

• RandomForestClassifier

• MLPRegressor

• MLPClassifier

From pytorch, we support neural networks built as nn.Sequential models with ReLU or linear

layers, with possibly a softmax layer at the end for classifiers.

Lastly, we implemented a model called DecisionRules, which allows the user to specify a series

of “if-then” rules specified in natural language, e.g., “if age ≥ 65 then 0.8”. This enables encoding

tables from the literature, like age-stratified mortalities, common in healthcare.

We make use of the MILP formulations from gurobi-machinelearning. At time of writing,

gurobi-machinelearning did not support the softmax function, although it did support the logistic

function. Hence, for multilayer perceptron classifiers from sklearn and for neural network classifiers

from torch, we implemented the MILP formulation ourselves. We also implemented the MILP

formulation of our DecisionRules model through a series of logical implications.

3.6.2 Using markovml

We walk through how to use markovml. Our software comes bundled with extensive documentation

and tutorials.

Instantiating a Markov process

There are three objects in the markovml package: MarkovReward, MarkovReach, and MarkovHitting.

They correspond to the problem you are trying to solve: verifying the total reward, reachability, and

hitting time, respectively. They have slightly different interfaces and internal operations, but there

is lots of common functionality, so it is easy to switch between them (in fact, they all inherit from the

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 55

same base class, AbstractMarkov, which provides almost all of the functionality). While they have

common setups, there are specific elements to each of them; for example, MarkovReward requires

the setting of a reward vector r while the other do not. Below are some examples of instantiating

each of these objects.

1 mrp = MarkovReward(n_states=2, n_features =2)

2 m_reach = MarkovReach(n_states=2, n_features =2, n_transient =1, n_targets =1)

3 m_hitting = MarkovHitting(n_states=2, n_features =2, n_transient =1)

Adding ML models

The next step is to add a machine learning model to the problem. This is done with the add ml model

function. This function takes a pretrained model as input and embeds its MILP formulation in the

underlying optimization problem. Suppose we have pretrained models reward model, trans model,

reward model2, trans model2, where the reward models are regression models and the transition

models are classification models. We can add them to the underlying Markov process as:

1 mrp.add_ml_model(reward_model)

2 mrp.add_ml_model(trans_model)

3 mrp.add_ml_model(reward_model2)

4 mrp.add_ml_model(trans_model2)

We can then access the variables corresponding to the outputs of each of these models using the

ml outputs attribute of the Markov object; e.g., mrp.ml outputs[0][0] is the first output of the

first added model (reward model).

Setting parameters

There are three ways to set the parameters of the Markov process: (1) pass constants at initialization,

(2) use set to const or set to ml output, or (3) use the setting helper functions.

If it is known that an entire vector or matrix is a constant, then this can be passed at initialization,

as below.

1 MarkovReward(n_states=2, n_features =2, r=[1, 0])

The set to const or set to ml output functions can be used to set elements one at a time

either to a constant or to an affine function of one of the ML models’ outputs, as below.

1 mrp.set_to_const(mrp.r[0], 1)

2 mrp.set_to_const(mrp.r[1], 0)

3

4 mrp.set_to_ml_output(mrp.r[2], mrp.ml_outputs [0][0])

5 mrp.set_to_ml_output(mrp.r[3], 2*mrp.ml_outputs [0][0] -1)

Lastly, each of the classes have setting helper functions which can be used to set the parameters

altogether, as it may be cumbersome to set one at a time. Depending on the class, these are: set pi,

set P, set Q, set r, set R.

1 mrp.set_pi ([mrp.ml_outputs [1][0] ,

2 1 - mrp.ml_outputs [1][0] ,

3 0, 0, 0])

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 56

Adding linear constraints on parameters

We can add linear constraints on the parameters quite simply:

1 mrp.add_constraint(mrp.r[0] >= 1)

Defining the feature space

To define X , we use add feature constraint and add feature aux variable. The first function

allows adding linear inequalities, and the second allows adding auxiliary continuous or discrete

variables. Together, these can encode any MILP-representable set.

1 mrp.add_feature_constraint(mrp.features [0] + mrp.features [1] <= 1.5)

2 mrp.add_feature_constraint(mrp.features [2] >= mrp.features [3])

Optimizing

Once all parameters have been set and the feature space has been fixed, we can optimize our metric

of interest quite simply.

1 mrp.optimize(sense="max")

It is possible to pass various solving options here as well as find a feasible solution instead of

optimizing.

Complete example

In only a few lines, a user can build a Markov process, integrate an ML model, and optimize the

reward.

1 from markovml.markovml import MarkovReward

2 from sklearn.linear_model import LogisticRegression

3 import numpy as np

4

5 # Create a Markov reward process

6 mrp = MarkovReward(n_states=2, n_features =2)

7

8 # fix some parameters

9 mrp.set_r([1, 0])

10 mrp.set_pi ([1, 0])

11

12 # train a classifier

13 X = np.random.rand (100, 2)

14 y = np.random.randint(0, 2, 100)

15 clf = LogisticRegression ().fit(X, y)

16

17 # add classifier

18 mrp.add_ml_model(clf)

19

20 # link to transitions

21 mrp.set_P ([[1 - mrp.ml_outputs [0][0] , mrp.ml_outputs [0][0]] , [0, 1]])

22

23 # define feature space

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 57

24 mrp.add_feature_constraint(mrp.features [0] >= 65)

25 mrp.add_feature_constraint(mrp.features [1] >= 100)

26

27 # optimize!

28 mrp.optimize(sense="max")

Decision rules

The following code demonstrates building a DecisionRules model, which allows building “if-then”

rules in a natural language syntax.

1 dr = DecisionRules(features = [’age’, ’income ’])

2 dr.fit(rules = [

3 "if age > 20 then 2.5",

4 "if income >= 50000 and age < 30 then -1.0",

5 "else 0.0"

6])

It is then possible to “predict” using such a model on new data. This can also be added into a

Markov object, just as any other learned model, and we implemented the MILP formulation through

a series of logical constraints.

3.7 Numerical Experiments

We compare our method to solving the optimization problem directly with an out-of-the-box solver.

Our experiments will analyze the following drivers of complexity of the bilinear program: the number

of states, the number of ML models, and the model complexity, notably for trees and neural networks.

3.7.1 Setup

For our experiments, we generate Markov chains and train ML models on randomly generated data,

and compare the solution time of our method versus directly with Gurobi.

For all experiments, we fix the number of features m = 5, the feature set X = [−1, 1]5, and
the discount factor λ = 0.97. We train ML models on randomly generated data (10, 000 random

points). For regression models, we draw X ∼ N (0, 1)10000×5, β ∼ N (0, 1)5, and then generate data

points as Xβ+ϵ, where ϵ ∼ N (0, 1)10000. For classification models, we use the same linear form but

draw data points from a Bernoulli distribution with probabilities σ(Xβ), where σ(·) is the logistic

function.

For rewards, we train a regression model whose output is set to r1. For i = 2, . . . , n, we set ri to

be output divided by i. For probabilities, we train binary classifiers for π and rows of P. For π, we

set π1 equal to the classifier output, the remaining probability is assigned to π2, and the remaining

are set to zero. For rows of P, the classifier output is the probability of remaining in the same state,

with the remaining probability assigned to transitioning to the next state, and the rest of the row

is 0. We make the last state absorbing, i.e., transitions to itself with probability 1. The Markov

process is essentially a discrete-time birth process, as one can only transition to the next state, or

stay in the same state, with the final state being absorbing.

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 58

For each configuration, we run 10 instances, each with random data, train the models on the

random data, and solve the optimization problem directly with an out-of-the-box solver and with

our method.

We perform the following experiments:

1. State Space: Vary n ∈ {5, 10, 20, 50, 100, 200} using three models: a linear regression for r and

two logistic regressions for π and the first row of P (the remaining rows are uniform).

2. Model Count: Fix n = 20 with linear regression for r and logistic regression for all probability

models. Models for r and π are always used, while the number of modeled rows in P varies

from 1 to 19, so that the total number of models runs from 3 to 21.

3. Decision Tree Depth: Fix n = 20 using three decision tree models (for r, π, and the first row

of P) with depths in {2, 3, 4, 6, 8}. Remaining rows of P are uniform.

4. Neural Network Architecture: Fix n = 20 using three ReLU multilayer perceptrons, for r, π,

and the first row of P. We vary hidden layers in {1, 2} and neurons per layer in {5, 10, 15, 20},
with remaining rows of P set uniformly.

We record runtime, objective value, and optimizer status. For our method, the runtime includes

solving the smaller MILPs, bound computations, the interval Gauss-Seidel phase, and the final

optimization. All experiments are run on an Intel Core i7 with 6 cores using Gurobi Optimizer

12.0.0 [Gurobi Optimization, LLC, 2024] (1200 second limit per problem, and presolve disabled

throughout). All code and instructions on how to reproduce our experiments is included with our

code.

We computed the geometric mean and geometric standard deviations of runtimes, and propor-

tions of optimizer statuses. For the runtime analysis, we only kept instances that were solved to

optimality. Sometimes, the optimizer would return a suboptimal status, meaning it cannot prove

optimality. If for an instance, our method did converge to optimality, and the direct method re-

turned a suboptimal status, and the objective values were the same up to a tolerance of 10−12, we

consider the suboptimal status to be optimal for the runtime statistical analysis. We performed

paired t-tests on the log of runtimes (for instances where both methods returned optimal) and χ2

tests for statuses.

Figure 3.2: Runtimes of our method versus direct solving. Each panel shows results from experiments
1-4 (left to right). Points represent geometric means with error bars indicating standard deviation.
Statistical significance from paired t-tests shown above: * (p < 0.05), † (p < 0.01), and § (p < 0.001).

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 59

Figure 3.3: Proportion (%) of instances categorized as optimal, suboptimal, timed out, or other.
Each panel shows experiments 1-4 (left to right). Our method is the left bar and direct method
is the right bar. Statistical significance from χ2 shown above: * (p < 0.05), † (p < 0.01), and §
(p < 0.001).

Table 3.2: Geometric means of runtimes and number of instances solved for ablations of our method.
Ablation numbers refer to ablating: (1) finding bounds on θ, (2) propagating bounds to π,P, r, (3)
initial bounds on v, and (4) tightening bounds on v. Lastly, None refers to no ablations. Note that
ablating (1) is equivalent to directly solving, and None is equivalent to our full method.

(1) (2) (3) (4) None

Runtime (sec),
geom. mean (sd)

710.79
(1.22)

292.36
(1.64)

282.42
(1.59)

1.85
(1.55)

1.89
(1.56)

Instances solved 6/10 8/10 7/10 10/10 10/10

3.7.2 Results

Figure 3.2 shows that our method consistently outperforms direct solving and scales much better

with all measures of complexity, and the differences are statistically significant, often at 1% and

0.1% significance. This is despite our method involving multiple optimization problems.

The difference is particularly striking as models get more complex: in the tree depth experiments,

our method is on average 117x faster for trees of depth 6 (direct mean 82.1 sec, our method mean

0.7 sec), and 391x faster for depth 8 (direct mean 665.3 sec, our method mean 1.7 sec) – reaching

a 1000x speedup on some instances. For neural networks, solving the problem directly times out

in every instance, as seen in Figure 3.3, even for the smallest architecture with 1 hidden layer of 5

neurons. However, our method solves all instances with 1 hidden layer and most instances with 2

hidden layers, although it often times out with 2 hidden layers of 20 neurons each. Figure 3.3 also

shows that the direct method often struggles with proving optimality.

In order to isolate the effects of different parts of our method, we performed an ablation study.

We redid the decision trees experiment fixing a tree depth of 8. We ablated, in turn: (1) finding

bounds on θ, (2) propagating bounds to π,P, r, (3) initial bounds on v, and (4) tightening bounds

on v. Ablating a step means ablating it and all subsequent steps. As shown in Table 3.2, the

biggest contributor to our method’s speedup is obtaining the initial bounds on v, which causes a

153x speedup on average compared to ablating it.

CHAPTER 3. FORMAL VERIFICATION OF MARKOV PROCESSES WITH LEARNED PARAMETERS 60

3.8 Discussion and Conclusion

We have introduced a novel framework for the formal verification of Markov processes with learned

parameters, enabling exact reasoning about systems where transition probabilities and rewards are

specified by machine learning models. Our approach formulates the verification task as a bilinear

program and introduces a decomposition and bound propagation scheme that significantly acceler-

ates computation—often by orders of magnitude, while maintaining global optimality guarantees.

This work contributes to the broader goal of safe and transparent deployment of ML in high-stakes

settings. Our healthcare case study demonstrates how the method can support robust decision mak-

ing in critical domains. We have implemented this in the software package markovml, which provides

a flexible language for defining Markov processes, embedding a range of ML models, and optimizing

key metrics.

Limitations Our experiments show that the method scales well across problem dimensions includ-

ing the number of states, models, and model complexity. However, a key limitation is scalability for

neural networks: our method worked well on small networks but degrades with increasing depth or

width. This is consistent with known computational hardness results for neural network verification.

Future work could improve performance by integrating state-of-the-art techniques from the neural

network verification literature, such as α, β-CROWN. One of the key limitations in the real-world

use of this method is that it assumes that the underlying ML model is accurate and well-fit. In

general, formal verification takes the ML model as is, and does not address issues related to, e.g.,

how errors in the ML model would propagate to uncertainty in the verification results. This issue

is perhaps outside of the scope of this paper but is an important caveat of which users should be

aware.

Future directions Our software package, markovml, is open-source and designed for extensibility.

We envision future extensions that support richer ML models and eventually integrates with other

neural network verifiers. Our current set-up assumes that the feature vector x lies in a MILP-

representable set X . However, this may lead to optimizing over a set that contains an unrealistic

combinations of features. A rich extension would be to assign a probability distribution to X . By

analogy, our present work is similar to a robust optimization framework while assigning a probability

distribution would be similar to a distributionally robust optimization framework. We hope this work

encourages further research at the intersection of probabilistic model checking and formal verification

of ML.

Chapter 4

Cost-Effectiveness of

Drone-Delivered Automated

External Defibrillators for Cardiac

Arrest

4.1 Introduction

Out-of-hospital cardiac arrest (OHCA) affects approximately 400,000 adults in the US and Canada

each year, with survival rates generally below 10% [McCormick, 1976, Heart and Stroke Foundation

of Canada, 2023]. Rapid treatment with cardiopulmonary resuscitation (CPR) and defibrillation

with an automated external defibrillator (AED) is crucial for survival [Berger, 2020].

Recently, there has been rapidly growing interest in using unmanned aerial vehicles, or drones,

to deliver AEDs to cardiac arrest victims. Several computational studies have optimized the design

of drone networks and found that drone-delivered AEDs can theoretically arrive much faster than

typical ambulance response times [Boutilier et al., 2017, Zègre-Hemsey et al., 2018, Pulver et al.,

2016, Pulver and Wei, 2018, Boutilier and Chan, 2022]. Others have studied the feasibility of drone

delivery by performing test flights to simulated cardiac arrests, validating the potential of rapid AED

delivery [Cheskes et al., 2020, Zègre-Hemsey et al., 2020, Claesson et al., 2016]. Finally, an ongoing

study in Sweden reported over 90% success in AED delivery to real cardiac arrests [Schierbeck et al.,

2022a] which led to the first recorded save of a sudden cardiac arrest by drone [Schierbeck et al.,

2022b, 2023].

Despite these promising results, the cost-effectiveness of AED drone delivery has not been rig-

orously established. Existing studies were restricted to population-based estimates of cardiac arrest

incidence and, most importantly, excluded healthcare costs in their calculations, which are much

greater than drone technology costs [Bogle et al., 2019, Bauer et al., 2021, Röper et al., 2023]. Since

many jurisdictions are developing and testing drone networks for AED delivery, a comprehensive

analysis is needed. In this paper, we conduct a rigorous cost-effectiveness analysis using a 10-year

cohort of OHCA data, along with in-hospital and post-discharge healthcare costs, from Ontario,

61

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 62

Canada. We evaluate close to one thousand different drone networks, develop statistical models to

predict patient outcomes under drone response times, and simulate patient trajectories post-arrest

using a Markov model.

4.2 Summary of Methods

This study was approved by the Research Ethics Board of Unity Health Toronto (protocol #: 18-091)

and was conducted in accordance with the CHEERS reporting guidelines.

4.2.1 Data Source and Study Setting

We obtained OHCA data from the Toronto, Canada site of the Resuscitation Outcomes Consortium

(ROC) cardiac arrest registry. From 2006-2015, ROC collected OHCA patient, event, response, and

outcome characteristics for 10 sites across the United States and Canada [Lin et al., 2011]. The

Toronto site included participation from eight EMS agencies19, collectively covering over 7 million

people over 26,000 square km.

4.2.2 Study Population

We included all EMS-treated OHCAs recorded by the Toronto ROC site between Jan. 1, 2006 and

Dec. 31, 2015. Patients under age 18, as well as those missing incident location, EMS response

timestamps, or OHCA outcome were excluded (additional details in Section 4.3.1).

4.2.3 Drone Network Optimization

The 538 EMS, fire, and police stations in the study region were considered as potential drone bases.

Based on current technology and implementation considerations, at most one drone is placed at each

base. The locations of drones were determined using mathematical optimization (additional details

in Section 4.3.2). To generate a large and diverse set of possible drone networks, we used three

different types of objectives:

1. Coverage: Reach as many people as possible within 1, 2, 3, 4, 5, 6, or 7 minutes

2. Mean: Minimize the mean response time

3. 90th percentile: Minimize the 90th percentile, by minimizing the mean of the upper 10% of

the response time distribution

For each objective, we create network sizes (i.e., number of drones) ranging from 5 to 535 drones,

in increments of 5, plus a network with 538 drones (i.e., all candidate bases). In total, we generated

964 different drone networks (107 network sizes for each of the nine objectives, plus the network of

538).

4.2.4 Drone Specifications

We utilized drone specifications obtained through discussions with InDro Robotics (Victoria, British

Columbia, Canada) for drones being considered in Ontario, and Everdrone (Sweden) who supply

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 63

Figure 4.1: Model used to chart trajectory of patient after an OHCA with a drone intervention. The
M indicates the Markov microsimulation model, with a cycle length of one year

the drones being used in Sweden [Schierbeck et al., 2023] (see Table 4.1). The cruising altitude of

the drone was 30 m. Its cruising speed was 56 km/h. Upon reaching its destination, the AED is

lowered by a tether. The combined time for takeoff and lowering was 30 s.

4.2.5 Decision Model

Our decision model consisted of three components: a decision tree, several prediction models, and a

Markov microsimulation model. The decision tree considered whether a drone-delivered AED would

be applied to an OHCA (Figure 4.1). The base case is the status quo of no drones, for which we use

the historical ambulance response time (i.e., from dispatch to arrival). For each drone network, the

drone response time (i.e., dispatch to AED on ground) was calculated based on the closest drone to

the OHCA. If the drone arrived first, a bystander would apply the AED with a certain probability

(Table 4.1). If the drone AED was not used, either because the drone arrived after the ambulance

or the bystander did not apply the AED, then we reverted to the base case for that OHCA.

The primary clinical outcome was the patient’s modified Rankin Scale (mRS) value, a scale of

neurological disability from 0 (no symptoms) to 6 (death) [Wilson et al., 2002]. In the base case,

the historical mRS was used. In the drone case, we used three prediction models to estimate mRS:

(1) probability of a shockable rhythm (binary logistic regression), (2) probability of survival to

hospital admission (binary logistic regression), and (3) probability of each mRS value at hospital

discharge, conditional on hospital admission (gradient boosted tree model). All models adjusted for

age, sex, witnessed status, and the response time. The latter two models also adjusted for presence

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 64

of a shockable heart rhythm (i.e., ventricular fibrillation or pulseless ventricular tachycardia [Sasson

et al., 2010]). Since probability of a shockable rhythm degrades over time, the second and third

models used the predicted shockability from the first model. More details about model training and

hyperparameters are in Section 4.3.3.

Finally, the Markov microsimulation model (Figure 4.1) tracked outcomes of each patient fol-

lowing hospital discharge based on their actual mRS (in the base case) or estimated mRS (in the

drone case), with a cycle length of one year. The model’s parameters were mRS-specific (Table 4.1;

Section 4.3.4).

4.2.6 Outcomes

We measured operational and healthcare costs. Operational costs comprised the cost to implement

and maintain the drone network for 10 years (the length of the study’s inclusion period), which

were obtained through discussions with InDro Robotics and Everdrone (Table 4.1; Section 4.3.4).

Healthcare costs included both in-hospital and post-discharge costs. A discount rate of 3% per year

was used. Costs were expressed in 2023 Canadian dollars.

For each drone network and for the base case, we calculated the number of survivors to hospital

admission, number of survivors to hospital discharge, and number of survivors with a neurologically

favorable outcome (i.e., mRS 0-2). We also calculated total costs and total quality-adjusted life-years

(QALYs). We identified non-dominated drone networks (based on strict and extended dominance

[Gold, 1996]) and calculated incremental cost-effectiveness ratios (ICER) and net monetary benefits

(NMB), with willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY.

4.2.7 Subgroup and Sensitivity analyses

Given their significant impact on survival, we conducted prespecified subgroup analyses on witnessed

OHCAs and shockable OHCAs. We also performed multiple one-way sensitivity analyses for all

parameters with ranges listed in Table 4.1. To test the sensitivity to drone costs, we scaled purchase,

maintenance, and per-flight costs by factors of 2 and 5, and calculated the breakeven cost multiplier

at which the NMB of the drone network equals the base case. Lastly, to test sensitivity to weather

and operational issues, we randomly excluded 10%, 25%, 50%, and 75% of patients from drone

delivery, averaging results over 100 random draws each.

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 65

T
ab

le
4.
1:

D
ro
n
e
sp
ec
ifi
ca
ti
o
n
s
a
n
d
eff

ec
ti
v
en
es
s
a
n
d
co
st

p
a
ra
m
et
er
s
u
se
d
in

a
n
a
ly
se
s

P
a
r
a
m

e
t
e
r

V
a
lu

e
R

a
n
g
e

R
e
fe

r
e
n
c
e

D
ro

n
e
sp

ec
ifi

ca
ti
o
n
s

P
e
r
s
o
n
a
l
c
o
m

m
u
n
ic

a
t
io

n
1

T
a
k
e
-o

ff
a
n
d

la
n
d
in

g
d
u
r
a
t
io

n
,
c
o
m

b
in

e
d

(
s
)

3
0

N
/
A

C
r
u
is
in

g
s
p
e
e
d

(
k
m

/
h
)

5
6

N
/
A

P
u
r
c
h
a
s
e

c
o
s
t

p
e
r

d
r
o
n
e

b
a
s
e

(
$
)

6
0
,0

0
0

N
/
A

P
u
r
c
h
a
s
e

c
o
s
t

p
e
r

d
r
o
n
e

(
$
)

4
4
,0

0
0

N
/
A

A
n
n
u
a
l
m

a
in

t
e
n
a
n
c
e

c
o
s
t

p
e
r

d
r
o
n
e

(
$
)

5
,0

0
0

N
/
A

O
p
e
r
a
t
in

g
c
o
s
t

p
e
r

d
r
o
n
e

fl
ig

h
t

(
$
)

2
7
5

N
/
A

M
in

im
u
m

t
im

e
r
e
q
u
ir
e
d

t
o

u
s
e

d
r
o
n
e

A
E
D

(
s
)

9
0

[6
0
,
1
2
0
]

S
t
a
r
k
s

e
t

a
l.

[2
0
2
0
]

P
r
o
b
a
b
il
it
y

o
f
d
r
o
n
e

A
E
D

u
s
e

0
.4

5
7

[0
.0

5
,
0
.7

5
]

B
o
g
le

e
t
a
l.

[2
0
1
9
],

A
n
d
e
r
s
e
n

e
t

a
l.

[2
0
1
9
],

H
a
n
s
e
n

e
t

a
l.

[2
0
1
5
],

H
e
d
g
e
s

e
t

a
l.

[2
0
0
6
]

E
ff
ec

ti
v
e
n
e
ss

p
a
ra

m
e
te
r
s

F
ir
s
t
-y

e
a
r

m
o
r
t
a
li
t
y

b
y

n
e
u
r
o
lo

g
ic

a
l
o
u
t
c
o
m

e
a
t

d
is
c
h
a
r
g
e

C
h
o
c
r
o
n

e
t

a
l.

[2
0
2
1
]

m
R
S

0
0
.0

1
3

[0
.0

0
2
,
0
.0

4
8
]

m
R
S

1
0
.0

6
1

[0
.0

3
1
,
0
.1

0
9
]

m
R
S

2
0
.0

5
6

[0
.0

2
5
,
0
.1

0
5
]

m
R
S

3
0
.1

4
9

[0
.0

9
3
,
0
.2

2
5
]

m
R
S

4
0
.2

5
2

[0
.1

7
8
,
0
.3

4
5
]

m
R
S

5
0
.5

9
8

[0
.4

4
2
,
0
.7

9
0
]

L
a
t
e
r
-y

e
a
r

m
o
r
t
a
li
t
y

p
e
r

y
e
a
r

b
y

n
e
u
r
o
lo

g
ic

a
l
o
u
t
c
o
m

e
a
t

d
is
c
h
a
r
g
e

C
h
o
c
r
o
n

e
t

a
l.

[2
0
2
1
]

m
R
S

0
0
.0

4
5

[0
.0

3
3
,
0
.0

5
9
]

m
R
S

1
0
.0

2
3

[0
.0

1
9
,
0
.0

2
9
]

m
R
S

2
0
.0

4
9

[0
.0

4
0
,
0
.0

6
1
]

m
R
S

3
0
.0

4
7

[0
.0

4
1
,
0
.0

5
5
]

m
R
S

4
0
.1

1
1

[0
.0

9
9
,
0
.1

2
3
]

m
R
S

5
0
.0

9
6

[0
.0

5
9
,
0
.1

0
5
]

Q
u
a
li
t
y

o
f
li
fe

p
e
r

y
e
a
r

b
y

n
e
u
r
o
lo

g
ic

a
l
o
u
t
c
o
m

e
a
t

d
is
c
h
a
r
g
e

R
a
n
g
a
r
a
ju

e
t

a
l.

[2
0
1
7
]

m
R
S

0
1
.0

0
[0

.8
5
,
1
.0

0
]

m
R
S

1
0
.8

4
[0

.8
0
,
1
.0

0
]

m
R
S

2
0
.7

8
[0

.6
0
,
0
.8

4
]

m
R
S

3
0
.7

1
[0

.6
0
,
0
.8

0
]

m
R
S

4
0
.4

4
[0

.3
4
,
0
.6

0
]

m
R
S

5
0
.1

8
[0

.1
4
,
0
.3

7
]

In
-h

o
s
p
it
a
l
c
o
s
t
s

b
y

n
e
u
r
o
lo

g
ic

a
l
o
u
t
c
o
m

e
a
t

d
is
c
h
a
r
g
e

(
$
)

G
e
r
i

e
t

a
l.

[2
0
2
0
],

D
e
w
il
d
e

e
t

a
l.

[2
0
1
7
],

G
e
r
i

e
t

a
l.

[2
0
1
7
]

m
R
S

0
5
4
,4

9
4
.2

7
[2

7
2
4
7
.1

3
,
1
0
8
9
8
8
.5

4
]

m
R
S

1
8
1
,6

8
6
.9

2
[4

0
8
4
3
.4

6
,
1
6
3
3
7
3
.8

4
]

m
R
S

2
1
2
8
,9

8
7
.9

5
[6

4
4
9
3
.9

7
,
2
5
7
9
7
5
.9

0
]

m
R
S

3
2
2
6
,6

9
6
.1

8
[1

1
3
3
4
8
.0

9
,
4
5
3
3
9
2
.3

5
]

m
R
S

4
2
8
1
,0

2
6
.9

7
[1

4
0
5
1
3
.4

9
,
5
6
2
0
5
3
.9

5
]

m
R
S

5
2
2
5
,4

4
2
.8

1
[1

1
2
7
2
1
.4

0
,
4
5
0
8
8
5
.6

1
]

m
R
S

6
2
2
,8

3
3
.1

0
[1

1
4
1
6
.5

5
,
4
5
6
6
6
.1

9
]

F
ir
s
t
-y

e
a
r

h
e
a
lt
h

s
y
s
t
e
m

c
o
s
t
s
,
b
y

n
e
u
r
o
lo

g
ic

a
l
o
u
t
c
o
m

e
a
t

d
is
c
h
a
r
g
e

(
$
)

G
e
r
i

e
t

a
l.

[2
0
2
0
],

D
e
w
il
d
e

e
t

a
l.

[2
0
1
7
]

m
R
S

0
3
,6

8
7
.3

1
[1

8
4
3
.6

5
,
7
3
7
4
.6

2
]

m
R
S

1
7
,8

2
2
.1

6
[3

9
1
1
.0

8
,
1
5
6
4
4
.3

2
]

m
R
S

2
1
4
,6

1
1
.3

2
[7

3
0
5
.6

6
,
2
9
2
2
2
.6

4
]

m
R
S

3
3
0
,1

9
7
.0

0
[1

5
0
9
8
.5

0
,
6
0
3
9
4
.0

0
]

1
W

it
h
P
h
il
ip

R
ee
ce
,
C
E
O

o
f
In
D
ro

R
o
b
o
ti
cs

(2
0
2
3
J
u
n
e
2
6
)
a
n
d
M
a
ts

S
ä
ll
st
rö
m
,
C
E
O

o
f
E
v
er
d
ro
n
e
(2
0
2
3
N
o
v
em

b
er

1
4
)

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 66

P
a
r
a
m

e
t
e
r

V
a
lu

e
R

a
n
g
e

R
e
fe

r
e
n
c
e

m
R
S

4
6
5
,9

0
6
.9

4
[3

2
9
5
3
.4

7
,
1
3
1
8
1
3
.8

8
]

m
R
S

5
7
4
,9

5
7
.6

0
[3

7
4
7
8
.8

0
,
1
4
9
9
1
5
.1

9
]

L
a
t
e
r
-y

e
a
r

h
e
a
lt
h

s
y
s
t
e
m

c
o
s
t
s

p
e
r

y
e
a
r

b
y

n
e
u
r
o
lo

g
ic

a
l
o
u
t
c
o
m

e
a
t

d
is
c
h
a
r
g
e

(
$
)

G
e
r
i

e
t

a
l.

[2
0
2
0
],

D
e
w
il
d
e

e
t

a
l.

[2
0
1
7
]

m
R
S

0
3
,8

3
0
.1

6
[1

9
1
5
.0

8
,
7
6
6
0
.3

1
]

m
R
S

1
5
,1

2
0
.2

9
[2

5
6
0
.1

4
,
1
0
2
4
0
.5

7
]

m
R
S

2
8
,5

2
3
.6

1
[4

2
6
1
.8

1
,
1
7
0
4
7
.2

4
]

m
R
S

3
2
2
,1

8
7
.1

8
[1

1
0
9
3
.5

9
,
4
4
3
7
4
.3

6
]

m
R
S

4
5
5
,5

0
9
.9

2
[2

7
7
5
4
.9

6
,
1
1
1
0
1
9
.8

4
]

m
R
S

5
5
2
,0

8
5
.6

3
[2

6
0
4
2
.8

1
,
1
0
4
1
7
1
.2

6
]

D
is
c
o
u
n
t

r
a
t
e

(
%

)
3

A
s
s
u
m

e
d

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 67

4.3 Detailed Methods

4.3.1 Data Summary and Processing

Our initial data set contained n = 25, 778 OHCAs from Ontario, Canada, from 2006-2015.

Location data processing

We first processed the locations of each OHCA. There were different types of location data which

had to be processed in different ways.

From the original n = 25778 records, n = 1622 had no location data and were excluded. Of the

rest with present location data, only n = 3834 had precise latitude/longitude, which we converted

to universal transverse Mercator (UTM) coordinates. For those with truncated (2 decimal places)

latitude/longitude (n = 1110), we concatenated random 3-digit numbers to make them as precise

as the precise latitude/longitude (5 decimal places), and then converted them to UTM.

For records with truncated UTM coordinates (n = 5321), we concatenated random 3-digit num-

bers to make them full UTM coordinates. Some (n = 27) truncated UTM coordinates were clearly

incorrect, as they had a leading digit that placed them outside the coordinate box covering Ontario

(e.g., a leading digit of 9). We corrected these by replacing the leading digit with the correct one

for Ontario (5 or 6 for eastings, and 4 or 5 for northings).

For those which listed the census tract (n = 13891), we obtained the geographic boundaries of

census tracts in 2001, 2006, 2011, and 2016 from Statistics Canada [2023c], and sampled a random

point within the corresponding census tract. Of these, n = 2162 records did not have an exact

match in the list of census tracts, corresponding to 171 unique census tract IDs. We assumed that

these were likely due to typographical errors. Therefore, we used a fuzzy string match, using the

Jaro-Winkler distance, which is commonly used for typographical error correction [Cohen et al.,

2003].

Lastly, we did a manual check of these locations by plotting them on a map of Ontario. We

observed that some (n = 235) points were either in water or were just outside of Ontario (e.g., in

Quebec). We fixed this by “rounding” all points to the nearest point within Ontario, according to

the boundaries provided by Statistics Canada.

We designated OHCA locations as urban or rural based on the definitions provided by Statistics

Canada. Statistics Canada uses the designation “population center” to mean a continuous area with

a population of at least 1,000 with a density of at least 400 persons per square kilometer [Statistics

Canada, 2023a, 2022]. All other areas are defined to be rural. We obtained the geographic boundaries

of these areas [Statistics Canada, 2023b] and categorized each OHCA.

After all this, we had n = 24, 156 points with cleaned location data.

Cleaning data

After processing locations, we removed some records with anomalous data. In particular, we removed

data with negative time-to-ambulances and time-to-ambulance outliers (defined as more than 3

standard deviations above the mean, i.e., more than 1372 seconds [2̃3 minutes]). We also filtered

out missing ages, unknown hospital states, and unknown or missing sex. We assumed that patients

with missing witnessed status (n=2551) were unwitnessed. We imputed missing mRS values using

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 68

a prediction model (Section 4.3.3). After all cleaning, we were left with n=22,017 records. This is

summarized in Table A.1.

4.3.2 Drone Networks

We studied three different types of models: 90th percentile, coverage, and mean. For each model,

we fixed a number of drones. We varied the number of drones from 5 up to 535, in increments of

5. Each drone base can have at most one drone, reflecting current logistical constraints. We also

created a drone network with 538 drones, which is the maximum number of drones possible, as it

is the number of candidate bases. Note that the network with 538 drones is the same regardless of

objective. The drone networks were optimized according to the locations of all OHCAs for which

we had valid location data (n = 24, 156).

The 90th percentile models minimize the average of the upper decile of the response time with a

given number of drones. Technically, these models are referred to as conditional value-at-risk models

(CVaR) [Boutilier and Chan, 2022]. There were 107 90th percentile models.

The coverage models maximize how many OHCAs can be reached in a given amount of time

with a given number of drones. We ran coverage models for coverage times of 1 to 7 minutes, in 1

minute increments. This yielded a total of 749 coverage models.

Lastly, the mean models minimize the mean response time with a given number of drones.

Technically, these are referred to as p-median models [Boutilier and Chan, 2022]. There were 107

median models.

Including the unique network with 538 drones, we evaluated 964 drone networks.

The possible locations that a drone can be placed were current existing EMS, fire, and police

stations in Ontario. The time that it takes a drone placed on a base to reach a given OHCA

is calculated by first finding the distance between the base and the OHCA. Then, we assume 30

seconds for takeoff and landing, and a speed of 56 km/h throughout the flight, to calculate the time.

All models were solved using Gurobi and Python, on an Intel i7 processor, with a time limit of

10 hours. For the CVaR models, we set an optimality gap of 1% for tractability reasons.

4.3.3 Prediction Models

Training models

We built three predictive models using our dataset, detailed in Table A.4.

To train each model, independent 80% subsets were drawn to fit the model, with the remaining

20% used for validation. For the mRS model, we first filtered to those who were admitted to the

hospital. An XGBoost model [Chen and Guestrin, 2016] was used for the mRS model, as we found

it performed much better than an ordered multinomial logistic regression model. We performed

hyperparameter tuning for the XGBoost model using a grid search, with 5-fold cross-validation

(parameters listed in Table A.4).

The shockable model achieved an area under the receiver operator characteristic curve (AUC) of

0.63 and the survival to hospital model achieved an AUC of 0.74. The XGBoost model achieved a

multiclass AUC [Hand and Till, 2001] of 0.57.

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 69

Applying the models

When we apply the models in the drone setting, we substitute the drone response time (if the drone

is used) to calculate the new outcome. If the drone is not used, then we do not apply the prediction

models and simply revert to the historical outcome from the data set.

We first predict the new shockable likelihood. We then use this as an input into the other

two models as follows. Let the predicted probability of a shockable rhythm be Pshock, the survival

model be s(), the mRS model m(), and let the patient’s covariates, not including shockability, be

represented by the vector x. Then, the predicted survival is calculated as:

Pshock · s(x, shock = 1) + [1− Pshock] · s(x, shock = 0)

And the predicted mRS is calculated as:

Pshock ·m(x, shock = 1) + [1− Pshock] ·m(x, shock = 0)

Note that all three models output probabilities: e.g., the mRS model outputs a list of probabilities

over mRS 0 through 6, for each patient. We propagate these probabilities throughout our calculations

in order to calculate the expected values for all measures.

Enforcing monotonicity of predictions

The prediction models introduce a statistical artifact which has to be corrected. This can be seen

through the following example. Say an ambulance takes 3 minutes to reach a patient, and upon

arriving the patient has a shockable rhythm. Now, say a drone takes 2 minutes to reach a patient,

and using this 2 minute value we predict a new shockable likelihood. However, the prediction model

will almost surely assign a non-zero probability to the not shockable outcome. This paradoxically

leads to a lower expected utility for the patient, despite the drone arriving earlier.

This can be corrected by enforcing a constraint that a drone arriving earlier should not lead to a

worse outcome than the ambulance outcome - in other words, outcomes should be monotonic with

respect to response time. For the shockable model, this means that if a drone arrives earlier, and the

patient was shockable in the ambulance case, then they will definitely (i.e., with 100% probability)

be shockable when the drone arrives. Similarly, for the survival model, if the patient survives in the

ambulance case, then if the drone arrives earlier they will definitely survive as well.

For the mRS model, we can enforce this constraint by saying that the patient can never go to a

worse mRS status than the ambulance outcome, if the drone arrives earlier. We do this as follows:

1. Get the mRS prediction as a list of probabilities over each mRS state.

2. Set the probabilities of mRS’ worse than the ambulance case to 0.

3. Normalize the values by dividing by the sum, to make them valid probabilities again.

Model for imputing missing mRS

In the dataset, n = 1006 patients survived hospital discharge but had a missing mRS. First, we

analyzed their missingness by comparing important covariates between those who survived discharge

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 70

and had mRS, and those who survived but had missing mRS. We found statistically significant

differences in some covariates (see Table A.5). We also used Little’s test to test if data was missing

completely at random, which returned p < 0.001, indicating we can reject the null hypothesis that

the data was missing completely at random. As a sensitivity analysis, we also excluded those with

missing mRS (Figure A.11) and found all drone networks were still cost-effective.

Therefore, we imputed their standard care mRS using a prediction model. We used an XGBoost

model similar to the one used above for the analysis. First, we filtered for patients who survived

hospital discharge (i.e., mRS 0-5). Then, we drew a random 80% training set, on which we performed

5-fold cross validation for hyperparameter tuning. The covariates used were: response time, age, sex,

witnessed, and shockability. The following hyperparameters were chosen based on hyperparameter

tuning:

• Max depth: 3

• Eta: 0.1

• Gamma: 0.3

• Number of rounds: 50

• Column sample by tree: 0.8

• Min child weight: 0.8

• Subsample: 0.8

• Number of threads: 2

The model achieved a multiclass AUC of 0.51 on the test set. We then applied this model to the

records with missing mRS, and took the class with the highest predicted probability. The predicted

classes for the n = 1006 patients are in Table A.6.

4.3.4 Cost-Effectiveness Model Parameters

Drone costs

These values were obtained via personal communications with Philip Reece, CEO of Indro Robotics

and Mats Sällström, CEO of Everdrone, in 2023. The cost of the drone network has three compo-

nents. Firstly, each drone must be housed in a drone port. A drone port costs $30,000, and lasts

for 5 years. In our simulations, we run a drone network for 10 years, so this amounts to a cost of

$60,000 per drone. Secondly, each drone costs $35,000; additionally, the camera costs $8,000, and
the payload $1,000. This yields a total cost of $44,000/drone to purchase. Third, each drone costs

$5,000/year for maintenance. Lastly, every time the drone flies, it costs $250 in operator costs; and,

every 50 launches, the drone port has to be inspected, at a cost of $1,250. This means a cost of

$2.75 per drone launch. We assume that a drone is sent for every OHCA.

Overall, the cost of a drone network with ndrones drones and ddispatches dispatches is:

154000 · ndrones + 275 · ddispatches

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 71

Note the first term above captures the fixed cost of the drone network, and the second term the

variable cost.

Transition probabilities

The transition probabilities are the yearly mortality rates for each discharge mRS. We distinguish

between first-year and later year. Chocron et al. [2021] report both 1-year and 5-year mortality rates

of OHCA patients in King County, Washington. We take the 1-year rates directly, and impute the

later-year mortalities with the 5-year mortalities. To calculate lower and upper bounds, we simply

repeat this procedure for the lower and upper bounds of the 95% confidence intervals that they

report.

Health care costs

For costs, the most relevant paper in the Ontario context is Geri et al. [2020]. However it only

provides the average costs of an OHCA in Ontario. In order to separate it out by mRS, we use cost

data from other papers, and make the assumption that the between-mRS ratios are constant. For

example, if a mRS2 patient is twice as costly as an mRS1 patient in New York, it would also be

twice as costly in Ontario. Based on this formulation, we can impute per-mRS costs for in-hospital

costs by solving a system of equations.

Mathematically, we know the average cost c̄ from the literature. We also know from our data

set that we have ni patients with an mRS of i (i.e., ranges from 0 to 6). We know that the total

number of patients is n. We want to calculate ci, i.e., the costs for each mRS. So, by definition, we

have the weighted average:

1

n

6∑
i=0

ni · ci = c̄

Now, we introduce the between-ratios for each mRS, relative to the cost of mRS 0. We let xi be

the ratio of costs from mRS i to mRS 0. If we take each of these values from the literature, we can

solve for each ci via standard substitution.

Using cost data from Dewilde et al. [2017] on stroke patients, we calculate the ratios of treatment

cost for all mRS’ relative to mRS 0. However, Dewilde et al. [2017] does not provide data on mRS 6

patients. To calculate that ratio, we use data from Geri et al. [2017] which provides OHCA costs by

cerebral performance category (CPC). We use the ratio between CPC 5 (death, equivalent to mRS

6) and CPC 1 (the least severe CPC category) as the ratio between mRS 6 and mRS 0. Given these

ratios, and knowing the number of people in each mRS category in our data set, we can solve this

system of equations and calculate the cost for each mRS.

We follow a similar approach for post-hospital costs, and separate into first-year and later-year.

Dewilde et al. [2017] gives 3 month, first-year, and later-year costs, while Geri et al. [2017] gives

1 month costs. First, based on the ratios between the 3-month costs from Dewilde et al. [2017],

we calculate the by-mRS 1-month costs, as we did above. Then, from Dewilde et al. [2017], we

calculate the ratio of first-year costs to 1-month costs, and later-year costs to 1-month costs. From

these ratios, we scale up the per-mRS costs that we previously calculated.

In this way, all cost values are imputations based on Geri et al. [2020], which provides costs in

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 72

terms of 2015 Canadian dollars. We use the Consumer Price Index (CPI) from the Bank of Canada

to calculate the equivalent costs in 2023 dollars. The CPI increased 23.72% from 2015 to 2023.

For the lower and upper bounds, we simply set the lower bound as half of the value, and the

upper bound as twice it.

Utilities

The utilities are simply taken from Rangaraju et al. [2017], and in this case we do not separate

between the first-year and later-year. The upper and lower bounds are taken to be the 25th percentile

and the 75th percentile as reported in that paper.

Probability of drone use

This value was taken from Bogle et al. [2019], who themselves take this value from Hansen et al.

[2015]. This value is not specific to drones: it is instead the probability of a trained bystander

performing CPR. However, it is in line with the value used by Andersen et al. [2019] (a cost-

effectiveness analysis of public AEDs) of 47%, which is taken from Hedges et al. [2006]. As this

value is poorly studied in the literature, we chose a large range of 0.05 to 0.75 for the possible values

of this probability in our sensitivity analysis.

Minimum time to use drone

This value was taken from Starks et al. [2020], which is a simulation study. We assumed a range of

60 seconds to 120 seconds for the sensitivity analysis.

Running the Cost-Effectiveness Model

First, for a given drone network, we calculate the time it would take to the nearest drone. If the

difference between the drone time and the ambulance time is less than the minimum time to use,

then we revert to standard care. Otherwise, the AED is used with some probability (and if not used,

again revert to standard care). As described above, we predict counterfactual outcomes based on

the drone time.

We run the Markov models for the rest of the life of the patient. Technically, we use the formula

for the value of an infinite-horizon discounted Markov reward process, from Chaper 1.5, to calculate

the total discounted cost and total discounted utility for each mRS discharge state. Then, knowing

the probability of the patient being in each mRS state, given either by the data (for standard care),

or by the prediction models (for the drone case), we can calculate the expected cost and expected

utility.

We obtain the initial distribution vector, π, either from our prediction models (recall they output

a probability vector over mRS states) or by historical data.

Note there is a caveat in the term discount factor as used in Markov models versus how it is

typically used in health economics. In economics, typically the present value of a reward R in time

period t is given by R/(1 + λ)t, while in Markov processes it is R · λt. So, a discount factor of 3%,

as is typical in cost-effectiveness analysis, cannot be plugged directly into this formula (in fact it

would extremely heavily favor the present). We make the appropriate modifications before using

this formula, i.e., using λ = 1/(1 + 0.03) = 0.97.

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 73

Figure 4.2: Cost-QALY plane. Labeled points (and dotted line) indicate the efficient frontier; labels
correspond to Table 2

4.4 Results

A total of 25,778 EMS-treated OHCAs were recorded during the study period. After applying the

exclusion criteria, 24,156 were used to optimize the drone networks, while 22,017 OHCAs were used

for outcomes analysis as they had all relevant patient covariates (Figure A.1, Table A.1). The final

cohort had a mean age of 68.6 years (SD 16.9), was 63.7% male, and 93.8% lived in urban areas.

All drone networks had higher costs and higher QALYs than the base case. After applying strict

and extended dominance, 20 drone networks were on the cost-QALY efficient frontier (Figure 4.2),

which we refer to as the “non-dominated networks”. Fourteen of the 20 networks were optimized

for coverage, one optimized for mean response time, four optimized the 90th percentile, and the

remaining one was the unique 538 drones network. At an ICER threshold of $50,000 per QALY

gained, the network with the highest QALYs was the 3-minute coverage network with 235 drones;

at thresholds of $100,000 and $150,000, it was the 90th percentile network with 380 drones.

Table 4.2 displays characteristics of the response time distribution, survival outcomes, and cost-

effectiveness for the base case and each of the non-dominated networks. In the base case, mean

response time was 6 min 21 s. There were 11,691, 1,855, and 1,748 survivors to hospital admis-

sion, discharge, and with neurologically favorable outcome, with respective costs per survivor of

$41,864.15, $263,845.69, and $279,996.42. Each of the 20 drone networks had shorter response

times, more survivors across all categories, and higher costs per survivor than the base case. Aver-

age drone network response times ranged from 4 min 18 s to 1 min 52 s, representing 32% to 71%

reductions from the base case. The expected number of survivors to admission, discharge, and with

neurologically favorable outcome were in the range [12,909, 13,915] (+10% to +19%), [2,263, 2,704]

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 74

Figure 4.3: Net monetary benefit, at thresholds of $50k, $100k, and $150k, for frontier networks.
Point labels correspond to Table 2

(+21% to +46%), and [2,097, 2,448] (+20% to +40%).

Figure 4.3 shows the net monetary benefit (NMB) for the 20 networks at the three thresholds

of $50,000/QALY, $100,000/QALY, and $150,000/QALY. For every threshold, all networks had

a higher NMB than the base case. As networks get larger, the NMB plateaus and then slightly

declines. This trend is also seen when looking at all 964 networks in Figure A.2, showing that the

NMB plateaus at around 100 drones. For smaller networks (¡100 drones), those with the highest

NMB tended to be the mean, 4-minute coverage, and 3-minute coverage networks (Table A.2).

90th percentile networks typically had the highest NMB for large networks (300-500 drones), while

2-minute coverage networks were best for the largest networks.

4.4.1 Subgroup Analyses

In Table A.3, we summarize clinical outcomes for the four subgroups of interest in the base case and

for each of the 20 non-dominated networks. For witnessed OHCAs, survival to hospital discharge

was 12.8% in the base case and [16.0%, 19.2%] over the 20 drone networks, representing relative

increases of 25% and 50%. For shockable OHCAs, survival to hospital discharge was 27.7% in the

base case and [31.5%, 35.7%] over the 20 networks, representing relative increases of 14% and 29%.

For shockable and witnessed OHCAs, survival to hospital discharge was 28.8% in the base case and

[33.3%, 37.9%] over the 20 networks, representing relative increases of 16% and 32%. Compared to

the general population, patients with shockable rhythms or witnessed arrests had higher base case

NMBs, and experienced greater gains in their NMBs with drone networks (Figure A.3). Patients

that were originally non-shockable also experienced some benefit due to the increased probability of

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 75

being shockable if the drone arrives earlier than historical ambulance response.

4.4.2 Sensitivity Analysis

Sensitivity of clinical outcomes to changes in model parameters for the 20 non-dominated networks

is shown in Figures A.4, A.5, and A.6. Clinical outcomes were most sensitive to the probability of

drone AED use, but across all parameter ranges tested, all 20 networks had more survivors across

all categories than the base case.

Sensitivity of NMB to model parameters is shown in Figure A.7. The NMB was generally most

sensitive to the probability of drone AED use, later-year mortality for mRS 0, utility for mRS 0,

minimum time to use drone, and in-hospital costs for mRS 0. Larger networks, which have higher

NMBs, were also more sensitive to parameter values. All 20 networks maintained a higher NMB

than the base case across all parameter ranges tested.

When drone operational costs are increased two-fold or five-fold, many of the 964 drone networks

still have a higher NMB than base case at a $50,000 threshold, and all but one remained so at the

higher thresholds (Figure A.8). Cost-effectiveness is highly robust to increases in drone costs: at

a $50,000 threshold, drone costs can increase by nearly ten-fold and networks with fewer than 100

drones still have a higher NMB than the base case (Figure A.9).

Lastly, while the NMB decreases as weather conditions exclude patients from drone delivery, all

networks remained cost-effective (Figure A.10), even when 75% of patients are excluded.

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 76

T
ab

le
4.
2:

R
es
p
on

se
ti
m
e
d
is
tr
ib
u
ti
o
n
m
et
ri
cs
,
o
u
tc
o
m
e
m
et
ri
cs
,
a
n
d
co
st
-e
ff
ec
ti
ve
n
es
s
m
et
ri
cs

fo
r
th
e

b
as
e
ca
se

(i
.e
.,
h
is
to
ri
ca
l
re
sp
o
n
se
)
a
n
d
ea
ch

d
ro
n
e
n
et
w
o
rk

co
n
fi
g
u
ra
ti
o
n
th
a
t
h
a
s
a
n
o
n
-d
om

in
a
te
d

in
cr
em

en
ta
l
co
st
-e
ff
ec
ti
v
en
es
s
ra
ti
o
(I
C
E
R
).
P
o
in
t
la
b
el
s
co
rr
es
p
o
n
d
to

F
ig
u
re

2
.
R
es
p
o
n
se

ti
m
e
fo
r

a
n
et
w
or
k
is

ca
lc
u
la
te
d
a
s
th
e
m
in
im

u
m

o
f
th
e
a
m
b
u
la
n
ce

ti
m
e
a
n
d
th
e
d
ro
n
e
ti
m
e.

P
o
in

t
D

r
o
n
e

n
e
t
-

w
o
r
k

R
e
s
p
o
n
s
e

t
im

e
(
s
)

E
x
p
e
c
t
e
d

n
u
m

b
e
r

o
f
p
a
t
ie

n
t
s
,
c
o
u
n
t

(
%

)
T
o
t
a
l
c
o
s
t

(
$
)

Q
A

L
Y

s
N

M
B

(
$
,
m

il
li
o
n
s
)

a
t

t
h
r
e
s
h
o
ld

I
C

E
R

(
$
/
Q

A
L
Y

)

M
ea

n

(S
D
)

M
ed

ia
n

(I
Q
R
)

S
u
r
v
iv
ed

to
h
o
sp

it
a
l

a
d
m
is
si
o
n

S
u
r
v
iv
ed

h
o
sp

it
a
l

d
is
c
h
a
rg
e

D
is
c
h
a
rg
ed

w
it
h

n
e
u
-

ro
lo
g
ic
a
ll
y

fa
v
o
ra

b
le

st
a
tu

s

(m
R
S

0
-2

)

T
o
ta

l

(i
n

m
il
-

li
o
n
s)

P
e
r
-

p
e
r
so

n

(n
=
2
2
,

0
1
7
)

P
e
r

su
r
v
iv
o
r

to

h
o
sp

it
a
l

a
d
m
is
-

si
o
n

P
e
r

su
r
v
iv
o
r

to

h
o
sp

it
a
l

d
is
-

c
h
a
rg
e

P
e
r

n
e
u
ro

-

lo
g
ic
a
ll
y

fa
v
o
r
-

a
b
le

su
r
v
iv
o
r

$
5
0
,0
0
0

$
1
0
0
,0
0
0

$
1
5
0
,0
0
0

B
a
s
e

c
a
s
e

3
8
1
.2

6

(
1
5
1
.8

3
)

3
5
8
.0

0

(
2
9
2
.0

0 -

4
3
3
.0

0
)

1
1
6
9
1
.0

0

(
5
3
.1

0
)

1
8
5
5
.0

0

(
8
.4

3
)

1
7
4
8
.0

0

(
7
.9

4
)

4
8
9
.4

3
2
2
2
2
9
.8

1
4
1
8
6
4
.1

5
2
6
3
8
4
5
.6

9
2
7
9
9
9
6
.4

2
2
4
3
2
8
.6

1
7
2
7
.0

0
1
9
4
3
.4

3
3
1
5
9
.8

6
N
/
A

A
C
o
v
e
r
a
g
e
,

5
m

in
,
2
0

d
r
o
n
e
s

2
5
8
.0

0

(
1
4
3
.6

5
)

2
3
4
.3

7

(
1
7
4
.6

9 -

3
0
0
.0

0
)

1
2
9
0
9
.0

2

(
5
8
.6

3
)

2
2
6
3
.0

5

(
1
0
.2

8
)

2
0
9
7
.3

3

(
9
.5

3
)

5
9
1
.2

4
2
6
8
5
3
.8

1
4
5
8
0
0
.5

5
2
6
1
2
5
7
.9

3
2
8
1
9
0
0
.8

0
2
9
1
9
7
.0

3
8
6
8
.6

1
2
3
2
8
.4

6
3
7
8
8
.3

1
2
0
9
1
1
.6

1

B
C
o
v
e
r
a
g
e
,

4
m

in
,
5
0

d
r
o
n
e
s

2
0
7
.7

3

(
1
3
7
.8

6
)

1
8
0
.0

0

(
1
3
3
.6

1 -

2
2
8
.0

4
)

1
3
3
7
8
.2

5

(
6
0
.7

6
)

2
4
4
2
.6

5

(
1
1
.0

9
)

2
2
4
7
.9

0

(
1
0
.2

1
)

6
3
5
.7

2
2
8
8
7
3
.9

3
4
7
5
1
8
.7

3
2
6
0
2
5
7
.2

8
2
8
2
8
0
5
.1

0
3
1
3
0
9
.8

8
9
2
9
.7

8
2
4
9
5
.2

7
4
0
6
0
.7

7
2
1
0
5
0
.6

7

C
C
o
v
e
r
a
g
e
,

3
m

in
,
5
5

d
r
o
n
e
s

1
9
7
.1

0

(
1
4
6
.6

9
)

1
5
7
.8

2

(
1
1
5
.8

3 -

2
1
9
.8

2
)

1
3
4
3
9
.1

8

(
6
1
.0

4
)

2
4
7
3
.1

0

(
1
1
.2

3
)

2
2
7
1
.9

3

(
1
0
.3

2
)

6
4
3
.7

3
2
9
2
3
7
.6

8
4
7
8
9
9
.2

0
2
6
0
2
9
1
.2

0
2
8
3
3
3
9
.3

9
3
1
6
6
4
.1

3
9
3
9
.4

8
2
5
2
2
.6

9
4
1
0
5
.8

9
2
2
6
0
7
.5

2

D
C
o
v
e
r
a
g
e
,

4
m

in
,
6
0

d
r
o
n
e
s

1
9
7
.4

2

(
1
3
8
.4

4
)

1
7
0
.1

1

(
1
2
2
.7

7 -

2
1
5
.1

2
)

1
3
4
4
9
.9

8

(
6
1
.0

9
)

2
4
8
0
.2

8

(
1
1
.2

7
)

2
2
7
8
.5

8

(
1
0
.3

5
)

6
4
5
.7

4
2
9
3
2
9
.3

8
4
8
0
1
0
.8

5
2
6
0
3
5
1
.6

6
2
8
3
3
9
8
.1

1
3
1
7
4
3
.5

4
9
4
1
.4

3
2
5
2
8
.6

1
4
1
1
5
.7

9
2
5
4
2
5
.1

2

E
C
o
v
e
r
a
g
e
,

3
m

in
,
8
5

d
r
o
n
e
s

1
7
6
.3

4

(
1
3
9
.2

1
)

1
4
1
.3

7

(
1
0
5
.4

4 -

1
8
1
.3

1
)

1
3
5
9
4
.7

8

(
6
1
.7

5
)

2
5
4
2
.0

9

(
1
1
.5

5
)

2
3
2
7
.5

2

(
1
0
.5

7
)

6
6
4
.3

0
3
0
1
7
2
.1

9
4
8
8
6
4
.4

2
2
6
1
3
2
1
.2

3
2
8
5
4
1
1
.5

3
3
2
4
5
8
.9

5
9
5
8
.6

5
2
5
8
1
.5

9
4
2
0
4
.5

4
2
5
9
3
7
.7

7

F
C
o
v
e
r
a
g
e
,

3
m

in
,
9
5

d
r
o
n
e
s

1
7
3
.1

6

(
1
3
7
.6

5
)

1
3
8
.9

2

(
1
0
3
.5

9 -

1
7
8
.9

0
)

1
3
6
1
2
.5

7

(
6
1
.8

3
)

2
5
5
1
.7

1

(
1
1
.5

9
)

2
3
3
5
.6

6

(
1
0
.6

1
)

6
6
7
.7

6
3
0
3
2
9
.3

2
4
9
0
5
4
.7

3
2
6
1
6
9
1
.6

9
2
8
5
8
9
7
.5

9
3
2
5
7
3
.1

1
9
6
0
.8

9
2
5
8
9
.5

5
4
2
1
8
.2

1
3
0
3
0
5
.7

1

G
C
o
v
e
r
a
g
e
,

3
m

in
,

1
1
0

d
r
o
n
e
s

1
6
8
.1

6

(
1
3
4
.3

8
)

1
3
5
.7

7

(
1
0
2
.1

4 -

1
7
3
.1

6
)

1
3
6
4
1
.3

6

(
6
1
.9

6
)

2
5
6
5
.9

5

(
1
1
.6

5
)

2
3
4
6
.7

4

(
1
0
.6

6
)

6
7
3
.3

8
3
0
5
8
4
.6

6
4
9
3
6
3
.3

0
2
6
2
4
2
9
.7

0
2
8
6
9
4
3
.8

0
3
2
7
3
7
.7

3
9
6
3
.5

0
2
6
0
0
.3

9
4
2
3
7
.2

8
3
4
1
5
0
.3

2

H
C
o
v
e
r
a
g
e
,

3
m

in
,

1
3
5

d
r
o
n
e
s

1
5
9
.0

7

(
1
2
6
.3

4
)

1
3
0
.3

2

(
9
7
.2

3 -

1
6
5
.5

5
)

1
3
7
0
4
.5

9

(
6
2
.2

5
)

2
5
9
3
.6

8

(
1
1
.7

8
)

2
3
6
7
.1

1

(
1
0
.7

5
)

6
8
4
.4

6
3
1
0
8
7
.6

1
4
9
9
4
3
.5

5
2
6
3
8
9
3
.9

6
2
8
9
1
5
2
.0

2
3
3
0
3
9
.6

7
9
6
7
.5

3
2
6
1
9
.5

1
4
2
7
1
.4

9
3
6
6
7
3
.8

9

I
C
o
v
e
r
a
g
e
,

3
m

in
,

1
4
5

d
r
o
n
e
s

1
5
5
.4

9

(
1
2
5
.6

5
)

1
2
6
.7

5

(
9
4
.8

2 -

1
6
2
.1

1
)

1
3
7
2
3
.9

2

(
6
2
.3

3
)

2
6
0
3
.9

8

(
1
1
.8

3
)

2
3
7
4
.2

2

(
1
0
.7

8
)

6
8
8
.7

1
3
1
2
8
0
.8

8
5
0
1
8
3
.2

5
2
6
4
4
8
4
.4

9
2
9
0
0
7
9
.4

7
3
3
1
5
0
.6

2
9
6
8
.8

2
2
6
2
6
.3

5
4
2
8
3
.8

8
3
8
3
5
0
.2

9

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 77

P
o
in

t
D

r
o
n
e

n
e
t
-

w
o
r
k

R
e
s
p
o
n
s
e

t
im

e
(
s
)

E
x
p
e
c
t
e
d

n
u
m

b
e
r

o
f
p
a
t
ie

n
t
s
,
c
o
u
n
t

(
%

)
T
o
t
a
l
c
o
s
t

(
$
)

Q
A

L
Y

s
N

M
B

(
$
,
m

il
li
o
n
s
)

a
t

t
h
r
e
s
h
o
ld

I
C

E
R

(
$
/
Q

A
L
Y

)

M
ea

n

(S
D
)

M
ed

ia
n

(I
Q
R
)

S
u
r
v
iv
ed

to
h
o
sp

it
a
l

a
d
m
is
si
o
n

S
u
r
v
iv
ed

h
o
sp

it
a
l

d
is
c
h
a
rg
e

D
is
c
h
a
rg
ed

w
it
h

n
e
u
-

ro
lo
g
ic
a
ll
y

fa
v
o
ra

b
le

st
a
tu

s

(m
R
S

0
-2

)

T
o
ta

l

(i
n

m
il
-

li
o
n
s)

P
e
r
-

p
e
r
so

n

(n
=
2
2
,

0
1
7
)

P
e
r

su
r
v
iv
o
r

to

h
o
sp

it
a
l

a
d
m
is
-

si
o
n

P
e
r

su
r
v
iv
o
r

to

h
o
sp

it
a
l

d
is
-

c
h
a
rg
e

P
e
r

n
e
u
ro

-

lo
g
ic
a
ll
y

fa
v
o
r
-

a
b
le

su
r
v
iv
o
r

$
5
0
,0
0
0

$
1
0
0
,0
0
0

$
1
5
0
,0
0
0

J
C
o
v
e
r
a
g
e
,

3
m

in
,

1
6
0

d
r
o
n
e
s

1
5
2
.5

7

(
1
2
3
.3

6
)

1
2
4
.5

5

(
9
4
.1

4 -

1
5
8
.1

3
)

1
3
7
3
9
.1

5

(
6
2
.4

0
)

2
6
1
2
.5

9

(
1
1
.8

7
)

2
3
8
1
.6

4

(
1
0
.8

2
)

6
9
2
.9

3
3
1
4
7
2
.5

0
5
0
4
3
4
.7

1
2
6
5
2
2
7
.0

3
2
9
0
9
4
7
.0

3
3
3
2
5
3
.5

7
9
6
9
.7

5
2
6
3
2
.4

3
4
2
9
5
.1

0
4
0
9
8
4
.5

8

K
C
o
v
e
r
a
g
e
,

3
m

in
,

1
8
5

d
r
o
n
e
s

1
4
7
.6

2

(
1
1
2
.3

5
)

1
2
4
.0

1

(
9
3
.9

2 -

1
5
6
.9

3
)

1
3
7
6
7
.6

1

(
6
2
.5

3
)

2
6
2
6
.0

2

(
1
1
.9

3
)

2
3
9
2
.0

8

(
1
0
.8

6
)

6
9
9
.9

7
3
1
7
9
2
.2

6
5
0
8
4
1
.8

1
2
6
6
5
5
1
.7

3
2
9
2
6
1
9
.2

5
3
3
4
0
4
.9

3
9
7
0
.2

8
2
6
4
0
.5

2
4
3
1
0
.7

7
4
6
5
1
1
.5

8

L
C
o
v
e
r
a
g
e
,

3
m

in
,

2
3
5

d
r
o
n
e
s

1
3
3
.1

2

(
9
8
.2

5
)

1
1
4
.6

9

(
8
5
.5

7 -

1
4
6
.4

4
)

1
3
8
3
9
.4

5

(
6
2
.8

6
)

2
6
5
7
.8

4

(
1
2
.0

7
)

2
4
1
4
.7

0

(
1
0
.9

7
)

7
1
6
.5

3
3
2
5
4
4
.5

9
5
1
7
7
4
.7

6
2
6
9
5
9
2
.7

6
2
9
6
7
3
8
.6

4
3
3
7
4
7
.7

2
9
7
0
.8

5
2
6
5
8
.2

4
4
3
4
5
.6

2
4
8
3
2
1
.1

9

M
9
0
t
h

%
il
e
,

3
4
5

d
r
o
n
e
s

1
2
0
.4

6

(
8
9
.2

9
)

1
0
1
.7

8

(
7
5
.7

3 -

1
3
4
.0

9
)

1
3
8
8
4
.9

2

(
6
3
.0

6
)

2
6
8
6
.0

4

(
1
2
.2

0
)

2
4
3
4
.6

0

(
1
1
.0

6
)

7
4
0
.8

9
3
3
6
5
0
.7

4
5
3
3
5
9
.2

1
2
7
5
8
2
9
.2

3
3
0
4
3
1
6
.5

5
3
4
0
6
1
.7

2
9
6
2
.2

0
2
6
6
5
.2

8
4
3
6
8
.3

7
7
7
5
5
9
.4

0

N
9
0
t
h

%
il
e
,

3
6
5

d
r
o
n
e
s

1
1
8
.5

5

(
8
5
.0

2
)

1
0
0
.8

1

(
7
5
.3

9 -

1
3
2
.9

9
)

1
3
8
9
0
.3

3

(
6
3
.0

9
)

2
6
9
0
.0

0

(
1
2
.2

2
)

2
4
3
7
.3

7

(
1
1
.0

7
)

7
4
4
.9

6
3
3
8
3
5
.5

9
5
3
6
3
1
.4

2
2
7
6
9
3
6
.5

4
3
0
5
6
4
0
.7

3
3
4
1
0
6
.0

2
9
6
0
.3

4
2
6
6
5
.6

4
4
3
7
0
.9

4
9
1
8
8
7
.6

7

O
9
0
t
h

%
il
e
,

3
8
0

d
r
o
n
e
s

1
1
7
.3

3

(
8
3
.2

5
)

1
0
0
.2

7

(
7
5
.0

0 -

1
3
2
.0

5
)

1
3
8
9
5
.6

7

(
6
3
.1

1
)

2
6
9
2
.6

7

(
1
2
.2

3
)

2
4
3
9
.6

8

(
1
1
.0

8
)

7
4
7
.8

6
3
3
9
6
7
.4

2
5
3
8
1
9
.7

0
2
7
7
7
3
9
.6

9
3
0
6
5
4
1
.0

1
3
4
1
3
7
.0

7
9
5
8
.9

9
2
6
6
5
.8

5
4
3
7
2
.7

0
9
3
4
5
7
.7

7

P
9
0
t
h

%
il
e
,

4
2
5

d
r
o
n
e
s

1
1
5
.2

4

(
7
9
.6

1
)

9
9
.4

2

(
7
4
.2

4 -

1
3
1
.0

9
)

1
3
9
0
4
.4

7

(
6
3
.1

5
)

2
6
9
7
.6

9

(
1
2
.2

5
)

2
4
4
3
.1

7

(
1
1
.1

0
)

7
5
6
.0

8
3
4
3
4
0
.6

8
5
4
3
7
6
.6

6
2
8
0
2
6
8
.6

4
3
0
9
4
6
6
.2

9
3
4
1
8
9
.4

8
9
5
3
.4

0
2
6
6
2
.8

7
4
3
7
2
.3

4
1
5
6
8
0
7
.5

6

Q
M

e
a
n
,

4
7
0

d
r
o
n
e
s

1
1
3
.3

9

(
7
5
.3

7
)

9
7
.7

2

(
7
2
.5

0 -

1
3
0
.1

2
)

1
3
9
1
1
.1

7

(
6
3
.1

8
)

2
7
0
1
.2

5

(
1
2
.2

7
)

2
4
4
5
.5

8

(
1
1
.1

1
)

7
6
4
.0

4
3
4
7
0
2
.4

0
5
4
9
2
2
.9

8
2
8
2
8
4
8
.2

6
3
1
2
4
1
8
.1

4
3
4
2
2
7
.8

4
9
4
7
.3

5
2
6
5
8
.7

4
4
3
7
0
.1

3
2
0
7
6
4
1
.9

8

R
C
o
v
e
r
a
g
e
,

2
m

in
,

5
0
5

d
r
o
n
e
s

1
1
2
.7

7

(
7
3
.2

4
)

9
7
.6

9

(
7
2
.4

9 -

1
2
9
.8

8
)

1
3
9
1
2
.7

7

(
6
3
.1

9
)

2
7
0
2
.6

8

(
1
2
.2

8
)

2
4
4
6
.6

8

(
1
1
.1

1
)

7
6
9
.6

9
3
4
9
5
8
.9

8
5
5
3
2
2
.6

9
2
8
4
7
8
8
.3

2
3
1
4
5
8
6
.7

1
3
4
2
4
5
.3

6
9
4
2
.5

8
2
6
5
4
.8

4
4
3
6
7
.1

1
3
2
2
4
0
0
.6

8

S
C
o
v
e
r
a
g
e
,

2
m

in
,

5
2
0

d
r
o
n
e
s

1
1
2
.3

9

(
7
2
.7

2
)

9
7
.5

6

(
7
2
.4

6 -

1
2
9
.6

9
)

1
3
9
1
4
.2

9

(
6
3
.2

0
)

2
7
0
3
.3

6

(
1
2
.2

8
)

2
4
4
7
.1

5

(
1
1
.1

1
)

7
7
2
.1

9
3
5
0
7
2
.5

2
5
5
4
9
6
.2

9
2
8
5
6
4
1
.6

2
3
1
5
5
4
6
.9

0
3
4
2
5
2
.5

2
9
4
0
.4

3
2
6
5
3
.0

6
4
3
6
5
.6

9
3
4
8
8
3
2
.2

7

T
5
3
8

d
r
o
n
e
s

1
1
2
.1

1

(
7
2
.4

1
)

9
7
.4

0

(
7
2
.2

2 -

1
2
9
.5

7
)

1
3
9
1
4
.5

5

(
6
3
.2

0
)

2
7
0
4
.0

1

(
1
2
.2

8
)

2
4
4
7
.6

0

(
1
1
.1

2
)

7
7
5
.1

2
3
5
2
0
5
.5

5
5
5
7
0
5
.7

8
2
8
6
6
5
6
.1

3
3
1
6
6
8
5
.6

8
3
4
2
5
9
.5

4
9
3
7
.8

6
2
6
5
0
.8

3
4
3
6
3
.8

1
4
1
7
2
4
2
.3

5

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 78

4.5 Discussion of Main Results

This study is the most comprehensive cost-effectiveness analysis to date of drone networks for AED

delivery for OHCA response. All 964 networks were cost-effective regardless of the willingness-to-

pay threshold. We identified 20 drone networks on the cost-QALY efficient frontier, all of which

had higher QALYs, better patient outcomes, and shorter response times than the base case (i.e., no

drones). Witnessed or shockable patients experienced the largest improvements in clinical outcomes

and NMB. However, even non-shockable patients (in the base case) may benefit due to becoming

shockable with an earlier drone response, leading to a potential benefit for them as well (Table A.3).

Our sensitivity analyses showed that even for the most pessimistic parameter values, all 20 drone

networks remained cost-effective and had better clinical outcomes than the base case.

NMB increased as more drones were added to the network, plateauing around 100 drones. Given

our study region’s population and size, this translates to having roughly 1 drone per 70,000 people

or 1 drone per 260 square km to maximize the NMB. The largest drone network corresponded to

1 drone per 13,000 people or 1 drone per 48 square km, implying that drone-delivered AEDs will

remain cost-effective for large networks. Recent studies in Sweden piloted networks of three to five

drones [Schierbeck et al., 2022a, 2023]. Relative to the population and region size, these represent

roughly 1 drone per 27,000 to 40,000 people or 1 drone per 39 to 42 square km, which is within

or near the range of drone network sizes that we show to be cost-effective. While real-world drone

networks to date have been small, our findings suggest that they will be cost-effective as they scale

up in the future.

In the literature on optimizing emergency response using ambulances, drones, or static AEDs,

many types of models have been considered, optimizing for coverage, mean response time and upper

percentile response times [Boutilier and Chan, 2022, Sun et al., 2018, Karlsson et al., 2019]. In this

paper, we found that networks optimized for coverage tended to be the most cost-effective at each

willingness-to-pay threshold. Indeed, 14 of the 20 non-dominated networks optimized for coverage.

For networks with fewer than 100 drones, optimizing for 3 or 4-minute coverage tended to have

the highest NMB. Given how quickly survival declines as a function of time, it is intuitive that

optimizing coverage, equivalent to setting a maximum response time, would make the best use of

limited resources.

The three studies closest to this paper are the economic analyses conducted by Bogle et al. [2019],

Bauer et al. [2021], and Röper et al. [2023]. They all found that drones were cost effective, but under

restrictive assumptions. None used patient-level OHCA data, relying instead on estimated incidence

from population data. They also did not consider healthcare costs, which comprise most of the

system costs. The first two studies used fixed probabilities of survival as a function of response time

interval, without considering the effect of patient covariates, while the third focused on comparing

coverage of drones against static AEDs, without considering survival outcomes. In contrast, we used

real OHCA data allowing us to generate machine learning-based outcome predictions, adjusting

for relevant covariates, to properly estimate the counterfactual of improved response time. We

also included healthcare costs that were stratified by neurological outcome, providing significant

granularity in our calculations. Andersen et al. [2019] also studied cost-effectiveness of static AEDs

using a decision tree and Markov model but measured neurological outcome as cerebral performance

category (CPC), estimated using coarse probabilities based only on response time intervals. A recent

Swedish government report also reported cost-effectiveness of a five-drone network [Fledsberg and

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 79

Pauli, 2023].

While our analysis focused on drone delivery of AEDs for OHCA, there is increasing interest

in drone delivery of other medical supplies such as naloxone kits for opioid overdose, epinephrine

autoinjectors for anaphylactic shock, and trauma kits. Drone networks that deliver these other items

in addition to AEDs will likely have improved cost-effectiveness as the drone costs will be spread

over more deliveries.

Drones are a promising technology that can decrease response times, meaning more patients can

receive treatment within a clinically meaningful time. However, success depends critically on other

factors like bystander availability who can retrieve and apply the AED. Overall, for the benefits of

drone delivery to be realized, both rapid delivery and effective bystander integration are needed.

Limitations Our study has several limitations. First, two key parameters for our model – the

probability of drone AED use and the minimum time to use the drone AED – are not well-studied

in the literature. Therefore, we conservatively assumed large ranges for these parameters. For

probability of AED use we considered a range of 0.05 to 0.75; even for the smallest value, our drone

networks were still cost-effective and associated with better clinical outcomes. Further research on

human-drone interaction [Unity Health Toronto, 2023, Sasson et al., 2010] may help to refine these

estimates. Second, variables like socio-economic factors or co-morbidities were not available in our

dataset, which may limit our predictive models.

As described in Section 4.3.4, healthcare costs and utilities stratified by mRS were only available

for stroke patients. To address this issue, we employed an imputation technique to estimate the

analogous values for OHCA. These values may be affected by region-specific differences in treatments.

However, our sensitivity analysis showed that our findings were robust to uncertainties in these

parameters. We also imputed missing mRS values for survivors (Section 4.3.3), but our findings

were robust to imputation (Figure A.11).

Drone operations are affected by drone technology, weather, restricted airspace, and dense urban

environments, which were not explicitly modeled. However, the drone networks remained cost-

effective even when up to 75% of patients, as seen in real-world implementations [Schierbeck et al.,

2023], are not dispatched a drone. There may also be unforeseen implementation costs, but we found

robustness to very large increases in costs.

4.6 Re-Analysis with our Algorithms

4.6.1 Sensitivity Analysis

Now, we perform a much more thorough sensitivity analysis using the tools developed in Chapter

2. We re-implemented the decision tree and Markov model from this chapter using markovag, our

software from Chapter 2. As an example, we study the 20-drone network that maximized 5-minute

coverage of cardiac arrests, as this was the smallest cost-effective network. We performed a three-way

sensitivity analysis on the following three key parameters:

• m: the drone cost multiplier. Maaz et al. [2024] obtained estimates of the cost to operate

the drone network from two drone companies. However, as the technology evolves and the

complexity of operating a large network changes (currently, the largest operating network in

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 80

the world, in Sweden, has only five drones), this cost may also change in unexpected ways.

Thus, the estimated drone costs can be scaled by m. In the original paper, values of m ∈ {2, 5}
were tested.

• pu: the probability of the drone-delivered AED being used. A value of 0.457 was used for

this probability, obtained from a prior study on bystander use of static AEDs. However, there

remains significant uncertainty about the true usage probability and how it might vary across

geographies. Thus, in the original one-way sensitivity analysis, a range of [0.05, 0.75] was

tested.

• p0: the first-year mortality of a patient discharged with mRS 0. In the original paper, this

parameter was found to be one of the most influential on NMB. It had a default value of 0.013,

and in the original one-way sensitivity analysis, a range of [0.002, 0.048] was tested.

We used markovag.markov to symbolically calculate the difference in NMB between the drone

case and the no-drones case. Then we used markovag.cad to construct the CAD for the inequality

representing “drone NMB ≥ status quo NMB”. The most important cell in the CAD is

0 < pu < 1 ∧ 0 < p0 < 1 ∧ 0 < m ≤ −132.46p0pu + 154.46pu

We omit the other cells as they represent extreme cases that are uninteresting or unrealistic for the

policymaker (e.g., pu = 1, meaning universal drone AED use). Some insights can be gleaned by

analyzing the first derivatives of the multilinear function bounding m:

• With respect to pu: we have −132.46p0 + 154.46, which is strictly positive for 0 < p0 < 1, so

the bound on m is strictly increasing in pu. As expected, with a higher probability of drone

AED use, higher drone costs are acceptable due to the larger benefits.

• With respect to p0: we have −132.46pu which is strictly negative for 0 < pu < 1, so the bound

on m is strictly decreasing in p0. This result is not easy to obtain otherwise and is somewhat

unexpected. A higher probability of death leads to lower utilities obviously, but also lower

costs, as there are non-trivial costs associated with treating surviving patients. In this case,

the analysis reveals that the increased costs outweigh the increased benefits, so that with a

higher probability of death, the acceptable level of drone costs decreases.

From this CAD representation, a policymaker can trace a path down the tree to determine the

validity of a set of parameters.

For illustrative purposes, we visualize the parameter regime over which the drone network is

cost-effective, found by markovag, by fixing m ∈ {1, 5} and letting p0 and pu vary. For comparison,

we consider the usual one-way and two-way sensitivity analyses using a grid with five evenly spaced

points, {0, 0.25, 0.5, 0.75, 1}. For the one-way analysis, we fixed one parameter at the default value

according to Table 4.1 (p0 = 0.013, pu = 0.457) and tested the free parameter at the five points

above. For the two-way sensitivity analysis, we construct a 5x5 grid of the two parameters. Grid

points where the inequality holds (does not hold) are denoted by a green star (red cross).

The plots in Figure 4.4 show that the range of parameter values associated with cost-effectiveness

is quite large, much more than suggested by the one-way or even two-way analyses, and that the

nonlinear boundary is easily identified. Methodologically, a grid search will always miss some part

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 81

Figure 4.4: Visualization of the parameter space over which the drone network is cost-effective. The
shaded gray region is the exact analytic solution obtained by markovag. The points represent the
traditional mesh grid approach, with green representing a valid point and red invalid.

of the true cost-effective region and it remains difficult to know a priori how fine a grid is needed

to approximate well the boundary. In the context of the drone application, these results elucidate

that the probability of drone AED usage may be much lower than expected while still leading to a

cost-effective intervention. Also, sensitivity of the cost-effectiveness finding to p0 seems to be more

apparent only when considering the interaction with other parameters.

4.6.2 Subgroup Analysis

We can also perform a much more rigorous subgroup analysis using the tools from Chapter 3. Recall

that in this chapter’s setup, the patient’s discharge mRS is given by an ML model (see Figure 4.1)

that takes as input the patient’s age and sex, features of the OHCA, and the time-to-defibrillation.

This means that π is linked to the outputs of an ML model. We constructed the Markov model

from Figure 4.1 in our software package from Chapter 3, markovml and embedded a pretrained

classifier2from the patient data that we used in this chapter.

By setting appropriate constraints to build X , in the language of Chapter 3, we can now perform

subgroup analyses. For example, we found that the best-case (or, maximum) NMB for men is about

50% higher than for women. This reflects lower mortality among men, i.e., lower probability of

being discharged with mRS 6, which would cause them to accrue zero utility and hence zero NMB.

Indeed, this finding is corroborated by other findings in the healthcare literature which find that

women have at least 50% higher mortality than men after an OHCA Parikh et al. [2020]. Notably,

doing this analysis as an optimization problem allowed us to solve it in an automated way, without

requiring the underlying patient data nor simulating representative patients.

2In this chapter’s analysis, a multiclass XGBoost classifier is used. Due to limited support for multiclass classifi-
cation models in markovml at time of writing, we opted for a binary decision tree for this re-analysis, that predicted
the probability of a patient being discharged with mRS 6 versus another mRS.

CHAPTER 4. COST-EFFECTIVENESS OF DRONES 82

4.7 Conclusion

In this cost-effectiveness analysis, we found that drone-delivery of defibrillators to individuals ex-

periencing OHCA is a cost-effective intervention that improves response times and survival. These

results are robust to a variety of modeling assumptions. We then performed re-analyses of drone-

delivered defibrillators using the Python packages developed in this thesis, namely markovag and

markovml. The exact multi-way sensitivity analysis enabled by markovag shows us that drones are

even more cost-effective than our initial analysis led us to believe, and the exact subgroup analysis

enabled by markovml rigorously allowed us to compare male and female patients, and this analysis

can be easily extended to more complex subgroups.

Chapter 5

Conclusion

In this thesis, we set out to study the analysis of Markov processes whose parameters are not fixed,

i.e., are uncertain. With that motivation, this thesis made two major technical contributions and

one major empirical contribution:

• Chapter 2 showed how to reduce sensitivity analysis to an equivalent polynomial system, and,

exploiting the properties of this polynomial system, we introduced a variant of CAD that has

only singly exponential time complexity.

• Chapter 3 introduced the problem of verifying Markov processes whose parameters are func-

tions. When the functions are MILP-representable, which encompasses many machine learning

models, the overall verification problem is equivalent to solving a bilinear program, and our

decomposition scheme provides a practical, scalable way of solving such a program.

• Chapter 4 presented the first cost-effectiveness analysis of drone-delivered defibrillators, finding

that drones are a cost-effective intervention. We also applied the algorithms developed in

Chapter 2 and 3 to further argue that drones are cost-effective over a range of modeling

assumptions.

Ultimately, this dissertation shows that the powerful tools developed in automated reasoning,

i.e., those that can provide exact proofs or guarantees of the behavior of a system, can be applied

to the study of Markov processes. In Chapter 2, we used symbolic methods, while in Chapter 3,

we used an optimization-based approach. In a larger sense, it also shows that the exact guarantees

provided by automated reasoning are not just of theoretical interest: they have clearly delineable

benefits to the very practical problem of health economic analysis. In keeping with this desire to

solve real problems, the algorithms developed in this thesis have been packaged into two software

libraries, markovag and markovml, which can be easily used by practitioners. The hope is that

these tools will empower researchers, engineers, and policymakers to make robust, transparent, and

trustworthy decisions whenever there is uncertainty in stochastic models.

83

Bibliography

Niels Henrik Abel. Mémoire sur les équations algébriques, où on demontre l’impossibilité de la

résolution de l’équation générale du cinquième dégré. 1824.

Oguzhan Alagoz, Lisa M Maillart, Andrew J Schaefer, and Mark S Roberts. Determining the

acceptance of cadaveric livers using an implicit model of the waiting list. Operations Research, 55

(1):24–36, 2007.

Lars W Andersen, Mathias J Holmberg, Asger Granfeldt, Lyndon P James, and Lisa Caulley. Cost-

effectiveness of public automated external defibrillators. Resuscitation, 138:250–258, 2019.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong

mixed-integer programming formulations for trained neural networks. Mathematical Programming,

183(1):3–39, 2020.

Lazaros Andronis, Pelham Barton, and Stirling Bryan. Sensitivity analysis in economic evaluation:

an audit of nice current practice and a review of its use and value in decision-making. Health

technology assessment (Winchester, England), 13(29):iii–ix, 2009.

Tu Anh-Nguyen and Joey Huchette. Neural network verification as piecewise linear optimization:

Formulations for the composition of staircase functions. arXiv preprint arXiv:2211.14706, 2022.

Thom Badings, Sebastian Junges, Ahmadreza Marandi, Ufuk Topcu, and Nils Jansen. Efficient

sensitivity analysis for parametric robust markov chains. In International Conference on Computer

Aided Verification, pages 62–85. Springer, 2023.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Gianluca Baio and A Philip Dawid. Probabilistic sensitivity analysis in health economics. Statistical

methods in medical research, 24(6):615–634, 2015.

Bank of Canada. Inflation calculator. https://www.bankofcanada.ca/rates/related/

inflation-calculator/. Accessed October 9, 2023.

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,

Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Math-

ias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and

industrial-strength SMT solver. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms

for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

84

https://www.bankofcanada.ca/rates/related/inflation-calculator/
https://www.bankofcanada.ca/rates/related/inflation-calculator/

BIBLIOGRAPHY 85

2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes

in Computer Science, pages 415–442. Springer, 2022. doi: 10.1007/978-3-030-99524-9\ 24. URL

https://doi.org/10.1007/978-3-030-99524-9_24.

Richard E Barlow and Frank Proschan. Mathematical theory of reliability. SIAM, 1996.

Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Geometry.

Springer Berlin, Heidelberg, 2006.

Jan Bauer, Dieter Moormann, Reinhard Strametz, and David A Groneberg. Development of un-

manned aerial vehicle (uav) networks delivering early defibrillation for out-of-hospital cardiac

arrests (ohca) in areas lacking timely access to emergency medical services (ems) in germany: a

comparative economic study. BMJ Open, 11(1):e043791, 2021.

Stuart Berger. Cpr and aeds save lives: insuring cpr–aed education and cpr–aed access in schools.

Current opinion in pediatrics, 32(5):641–645, 2020.

Abraham Berman and Robert J Plemmons. Nonnegative matrices in the mathematical sciences.

SIAM, 1994.

Hans Blanc and D den Hertog. On markov chains with uncertain data. Technical report, Tilburg

University, School of Economics and Management, 2008.

Grigoriy Blekherman, Pablo A Parrilo, and Rekha R Thomas. Semidefinite optimization and convex

algebraic geometry. SIAM, 2012.

Brittany Bogle, Wayne D Rosamond, Kyle T Snyder, and Jessica K Zègre-Hemsey. The case for

drone-assisted emergency response to cardiac arrest: an optimized statewide deployment approach.

North Carolina medical journal, 80(4):204, 2019.

Justin J Boutilier and Timothy CY Chan. Drone network design for cardiac arrest response. Man-

ufacturing & Service Operations Management, 24(5):2407–2424, 2022.

Justin J Boutilier, Steven C Brooks, Alyf Janmohamed, Adam Byers, Jason E Buick, Cathy Zhan,

Angela P Schoellig, Sheldon Cheskes, Laurie J Morrison, and Timothy CY Chan. Optimizing a

drone network to deliver automated external defibrillators. Circulation, 135(25):2454–2465, 2017.

PR Breeze, C Thomas, H Squires, A Brennan, C Greaves, P Diggle, E Brunner, A Tabak, L Preston,

and J Chilcott. Cost-effectiveness of population-based, community, workplace and individual

policies for diabetes prevention in the uk. Diabetic Medicine, 34(8):1136–1144, 2017.

Andrew Briggs, Mark Sculpher, and Martin Buxton. Uncertainty in the economic evaluation of

health care technologies: the role of sensitivity analysis. Health economics, 3(2):95–104, 1994.

Andrew H Briggs, Milton C Weinstein, Elisabeth AL Fenwick, Jonathan Karnon, Mark J Sculpher,

A David Paltiel, ISPOR-SMDM Modeling Good Research Practices Task Force, et al. Model pa-

rameter estimation and uncertainty: a report of the ispor-smdm modeling good research practices

task force-6. Value in Health, 15(6):835–842, 2012.

Christopher W. Brown. Solution formula construction for truth invariant cad’s. PhD thesis, USA,

1999.

https://doi.org/10.1007/978-3-030-99524-9_24

BIBLIOGRAPHY 86

Christopher W Brown. An overview of qepcad b: a tool for real quantifier elimination and formula

simplification. Journal of Japan Society for Symbolic and Algebraic Computation, 10(1):13–22,

2003.

John Canny. A new algebraic method for robot motion planning and real geometry. In 28th Annual

Symposium on Foundations of Computer Science (sfcs 1987), pages 39–48. IEEE, 1987.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017

ieee symposium on security and privacy (sp), pages 39–57. Ieee, 2017.

Andrea Carta and Claudio Conversano. On the use of markov models in pharmacoeconomics: pros

and cons and implications for policy makers. Frontiers in public health, 8:569500, 2020.

Hal Caswell. Sensitivity analysis of discrete markov chains via matrix calculus. Linear Algebra and

its Applications, 438(4):1727–1745, 2013.

Hal Caswell. Sensitivity analysis of discrete markov chains. Sensitivity Analysis: Matrix Methods in

Demography and Ecology, pages 255–280, 2019.

Timothy CY Chan and Muhammad Maaz. Exact sensitivity analysis of markov reward processes

via algebraic geometry. arXiv preprint arXiv:2410.05471, 2024.

Taolue Chen, Ernst Moritz Hahn, Tingting Han, Marta Kwiatkowska, Hongyang Qu, and Lijun

Zhang. Model repair for markov decision processes. In 2013 International Symposium on Theo-

retical Aspects of Software Engineering, pages 85–92. IEEE, 2013.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794,

2016.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neural

networks. In Automated Technology for Verification and Analysis: 15th International Symposium,

ATVA 2017, Pune, India, October 3–6, 2017, Proceedings 15, pages 251–268. Springer, 2017.

Sheldon Cheskes, Shelley L McLeod, Michael Nolan, Paul Snobelen, Christian Vaillancourt, Steven C

Brooks, Katie N Dainty, Timothy CY Chan, and Ian R Drennan. Improving access to automated

external defibrillators in rural and remote settings: a drone delivery feasibility study. Journal of

the American Heart Association, 9(14):e016687, 2020.

Richard Chocron, Carol Fahrenbruch, Lihua Yin, Sally Guan, Christopher Drucker, Jenny Shin,

Mickey Eisenberg, Neal A Chatterjee, Peter J Kudenchuk, and Thomas Rea. Association between

functional status at hospital discharge and long-term survival after out-of-hospital-cardiac-arrest.

Resuscitation, 164:30–37, 2021.

Andreas Claesson, D Fredman, Leif Svensson, Mattias Ringh, Jacob Hollenberg, Per Nordberg,

M Rosenqvist, Therese Djarv, S Österberg, Josefin Lennartsson, et al. Unmanned aerial vehi-

cles (drones) in out-of-hospital-cardiac-arrest. Scandinavian journal of trauma, resuscitation and

emergency medicine, 24:1–9, 2016.

BIBLIOGRAPHY 87

William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison of string metrics for

matching names and records. InKdd workshop on data cleaning and object consolidation, volume 3,

pages 73–78, 2003.

George E Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition–

preliminary report. ACM SIGSAM Bulletin, 8(3):80–90, 1974.

George E Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition:

a synopsis. ACM SIGSAM Bulletin, 10(1):10–12, 1976.

Liyi Dai. Sensitivity analysis of stationary performance measures for markov chains. Mathematical

and computer modelling, 23(11-12):143–160, 1996.

George B Dantzig, Alex Orden, Philip Wolfe, et al. The generalized simplex method for minimizing

a linear form under linear inequality restraints. Pacific Journal of Mathematics, 5(2):183–195,

1955.

Gert De Cooman, Filip Hermans, and Erik Quaeghebeur. Sensitivity analysis for finite markov

chains in discrete time. arXiv preprint arXiv:1408.2029, 2014.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,

2008.

Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction and applica-

tions. Communications of the ACM, 54(9):69–77, 2011.

Leonardo De Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In

Automated Deduction–CADE 28: 28th International Conference on Automated Deduction, Virtual

Event, July 12–15, 2021, Proceedings 28, pages 625–635. Springer, 2021.

Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with parameter

uncertainty. Operations research, 58(1):203–213, 2010.

Benôıt Delahaye, Didier Lime, and Laure Petrucci. Parameter synthesis for parametric interval

markov chains. In International Conference on Verification, Model Checking, and Abstract Inter-

pretation, pages 372–390. Springer, 2015.

Sarah Dewilde, Lieven Annemans, Andre Peeters, Dimitri Hemelsoet, Yves Vandermeeren, Philippe

Desfontaines, Raf Brouns, Geert Vanhooren, Patrick Cras, Boudewijn Michielsens, et al. Modified

rankin scale as a determinant of direct medical costs after stroke. International Journal of Stroke,

12(4):392–400, 2017.

Matthew England, Russell Bradford, and James H Davenport. Improving the use of equational con-

straints in cylindrical algebraic decomposition. In Proceedings of the 2015 ACM on International

Symposium on Symbolic and Algebraic Computation, pages 165–172, 2015.

Matthew England, Russell Bradford, and James H Davenport. Cylindrical algebraic decomposition

with equational constraints. Journal of Symbolic Computation, 100:38–71, 2020.

BIBLIOGRAPHY 88

Stephanie Fledsberg and Emelie Pauli. Drönarlevererade hjärtstartare i vgr [drone delivered defib-

rillator in vgr]. Sweden. Västra Götalandsregionen [West Gotaland Region], Aug 2023.

Joseph Fourier. Histoire de l’académie, partie mathématique (1824). Mémoires de l’Académie des

sciences de l’Institut de France, 7, 1827.

Guillaume Geri, Carol Fahrenbruch, Hendrika Meischke, Ian Painter, Lindsay White, Thomas D

Rea, and Marcia R Weaver. Effects of bystander cpr following out-of-hospital cardiac arrest on

hospital costs and long-term survival. Resuscitation, 115:129–134, 2017.

Guillaume Geri, Damon C Scales, Maria Koh, Harindra C Wijeysundera, Steve Lin, Michael Feld-

man, Sheldon Cheskes, Paul Dorian, Wanrudee Isaranuwatchai, Laurie J Morrison, et al. Health-

care costs and resource utilization associated with treatment of out-of-hospital cardiac arrest.

Resuscitation, 153:234–242, 2020.

Joel Goh, Mohsen Bayati, Stefanos A Zenios, Sundeep Singh, and David Moore. Data uncertainty

in markov chains: Application to cost-effectiveness analyses of medical innovations. Operations

Research, 66(3):697–715, 2018.

Marthe R Gold. Cost-effectiveness in health and medicine. Oxford university press, 1996.

Vineet Goyal and Julien Grand-Clément. Robust markov decision processes: Beyond rectangularity.

Mathematics of Operations Research, 48(1):203–226, 2023.

Julien Grand-Clément and Marek Petrik. On the convex formulations of robust markov decision

processes. Mathematics of Operations Research, 2024.

Joseph F Grcar. Mathematicians of gaussian elimination. Notices of the AMS, 58(6):782–792, 2011.

LLC Gurobi Optimization. Gurobi machine learning, 2024. URL https://pypi.org/project/

gurobi-machinelearning/. Python package for integrating regression models into optimization

problems.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi.

com.

David J Hand and Robert J Till. A simple generalisation of the area under the roc curve for multiple

class classification problems. Machine learning, 45:171–186, 2001.

Carolina Malta Hansen, Kristian Kragholm, David A Pearson, Clark Tyson, Lisa Monk, Brent

Myers, Darrell Nelson, Matthew E Dupre, Emil L Fosbøl, James G Jollis, et al. Association

of bystander and first-responder intervention with survival after out-of-hospital cardiac arrest in

north carolina, 2010-2013. Jama, 314(3):255–264, 2015.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal aspects

of computing, 6:512–535, 1994.

Heart and Stroke Foundation of Canada. Saving lives. https://www.heartandstroke.ca/

what-we-do/our-impact/saving-lives, 2023. Accessed July 20, 2023.

https://pypi.org/project/gurobi-machinelearning/
https://pypi.org/project/gurobi-machinelearning/
https://www.gurobi.com
https://www.gurobi.com
https://www.heartandstroke.ca/what-we-do/our-impact/saving-lives
https://www.heartandstroke.ca/what-we-do/our-impact/saving-lives

BIBLIOGRAPHY 89

Jerris R Hedges, Ruchir Sehra, Jonathan W Van Zile, Andrew R Anton, Lois A Bosken, Robert E

O’Connor, Richard Moore, Judy L Powell, and Mary Ann McBurnie. Automated external de-

fibrillator program does not impair cardiopulmonary resuscitation initiation in the public access

defibrillation trial. Academic emergency medicine, 13(6):659–665, 2006.

Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement

and adversarial search. In ECAI 2020, pages 2513–2520. IOS Press, 2020.

Patrick Henriksen and Alessio Lomuscio. Deepsplit: An efficient splitting method for neural network

verification via indirect effect analysis. In IJCAI, pages 2549–2555, 2021.

Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus Siegle. A markov chain

model checker. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 347–362. Springer, 2000.

Filip Hermans and Gert De Cooman. Characterisation of ergodic upper transition operators. Inter-

national Journal of Approximate Reasoning, 53(4):573–583, 2012.

Hoon Hong. An improvement of the projection operator in cylindrical algebraic decomposition. In

Proceedings of the international symposium on Symbolic and algebraic computation, pages 261–

264, 1990.

Jaroslav Horáček. Interval linear and nonlinear systems. Phd thesis, Univerzita Karlova,

Matematicko-fyzikálńı fakulta, Prague, Czech Republic, 2019.

Reiner Horst and Panos M Pardalos. Handbook of global optimization, volume 2. Springer Science

& Business Media, 2013.

Philip Hougaard. Multi-state models: a review. Lifetime data analysis, 5:239–264, 1999.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):

257–280, 2005.

Rahul Jain, Michael Grabner, and Eberechukwu Onukwugha. Sensitivity analysis in cost-

effectiveness studies: from guidelines to practice. Pharmacoeconomics, 29:297–314, 2011.

R. G. Jeroslow and J. K. Lowe. Modelling with integer variables, pages 167–184. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1984.

Dejan Jovanović and Leonardo De Moura. Solving non-linear arithmetic. ACM Communications in

Computer Algebra, 46(3/4):104–105, 2013.

Sebastian Junges. Parameter synthesis in Markov models. PhD thesis, Dissertation, RWTH Aachen

University, 2020, 2020.

Sebastian Junges, Erika Ábrahám, Christian Hensel, Nils Jansen, Joost-Pieter Katoen, Tim Quat-

mann, and Matthias Volk. Parameter synthesis for markov models: covering the parameter space.

Formal Methods in System Design, 62(1):181–259, 2024.

BIBLIOGRAPHY 90

Lena Karlsson, Carolina Malta Hansen, Mads Wissenberg, Steen Møller Hansen, Freddy K Lippert,

Shahzleen Rajan, Kristian Kragholm, Sidsel G Møller, Kathrine Bach Søndergaard, Gunnar H

Gislason, et al. Automated external defibrillator accessibility is crucial for bystander defibrillation

and survival: a registry-based study. Resuscitation, 136:30–37, 2019.

J-P Katoen, Maneesh Khattri, and IS Zapreevt. A markov reward model checker. In Second

International Conference on the Quantitative Evaluation of Systems (QEST’05), pages 243–244.

IEEE, 2005.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An

efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th

International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part

I 30, pages 97–117. Springer, 2017.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth

Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The marabou framework for verifi-

cation and analysis of deep neural networks. In Computer Aided Verification: 31st International

Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31, pages

443–452. Springer, 2019.

Suhas Kotha, Christopher Brix, J. Zico Kolter, Krishnamurthy Dvijotham, and Huan Zhang. Prov-

ably bounding neural network preimages. In A. Oh, T. Neumann, A. Globerson, K. Saenko,

M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36,

pages 80270–80290, 2023.

Gereon Kremer and Erika Ábrahám. Fully incremental cylindrical algebraic decomposition. Journal

of Symbolic Computation, 100:11–37, 2020.

Gereon Kremer, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. Cooperating techniques for

solving nonlinear real arithmetic in the cvc5 smt solver (system description). In International Joint

Conference on Automated Reasoning, pages 95–105. Springer International Publishing Cham,

2022.

Eline M Krijkamp, Fernando Alarid-Escudero, Eva A Enns, Hawre J Jalal, MG Myriam Hunink, and

Petros Pechlivanoglou. Microsimulation modeling for health decision sciences using r: a tutorial.

Medical Decision Making, 38(3):400–422, 2018.

Jan Kronqvist, Ruth Misener, and Calvin Tsay. Between steps: Intermediate relaxations between

big-m and convex hull formulations. In International Conference on Integration of Constraint

Programming, Artificial Intelligence, and Operations Research, pages 299–314. Springer, 2021.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic symbolic model

checker. In International Conference on Modelling Techniques and Tools for Computer Perfor-

mance Evaluation, pages 200–204. Springer, 2002.

Richard Lassaigne and Sylvain Peyronnet. Approximate verification of probabilistic systems. In Joint

International Workshop von Process Algebra and Probabilistic Methods, Performance Modeling

and Verification, pages 213–214. Springer, 2002.

BIBLIOGRAPHY 91

Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal

on optimization, 11(3):796–817, 2001.

Yujin Lee, Dariush Mozaffarian, Stephen Sy, Junxiu Liu, Parke E Wilde, Matti Marklund, Shafika

Abrahams-Gessel, Thomas A Gaziano, and Renata Micha. Health impact and cost-effectiveness

of volume, tiered, and absolute sugar content sugar-sweetened beverage tax policies in the united

states: a microsimulation study. Circulation, 142(6):523–534, 2020.

Steve Lin, Laurie J Morrison, and Steven C Brooks. Development of a data dictionary for the

strategies for post arrest resuscitation care (sparc) network for post cardiac arrest research. Re-

suscitation, 82(4):419–422, 2011.

Stanislaw Lojasiewicz. Ensembles semi-analytiques. Lectures Notes IHES (Bures-sur-Yvette), 1965.

Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with

pairwise interactions. In Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 623–631, 2013.

Muhammad Maaz and Timothy CY Chan. Formal verification of markov processes with learned

parameters. arXiv preprint arXiv:2501.15767, 2025.

MuhammadMaaz, K. H. Benjamin Leung, Justin J. Boutilier, Sze chuan Suen, Paul Dorian, Laurie J.

Morrison, Damon C. Scales, Sheldon Cheskes, and Timothy C. Y. Chan. Cost-effectiveness of

drone-delivered automated external defibrillators for cardiac arrest. Under review, 2024.

Muhammad Maaz, KH Benjamin Leung, Justin J Boutilier, Sze-chuan Suen, Paul Dorian, Laurie J

Morrison, Damon C Scales, Sheldon Cheskes, and Timothy CY Chan. Cost-effectiveness of drone-

delivered automated external defibrillators for cardiac arrest. Resuscitation, 209:110552, 2025.

Peter Marbach and John N Tsitsiklis. Simulation-based optimization of markov reward processes.

IEEE Transactions on Automatic Control, 46(2):191–209, 2001.

Peter Marbach and John N Tsitsiklis. Approximate gradient methods in policy-space optimization

of markov reward processes. Discrete Event Dynamic Systems, 13:111–148, 2003.

Garth P McCormick. Computability of global solutions to factorable nonconvex programs: Part

i—convex underestimating problems. Mathematical programming, 10(1):147–175, 1976.

Elly Mertens, Els Genbrugge, Junior Ocira, and José L Peñalvo. Microsimulation modeling in food

policy: A scoping review of methodological aspects. Advances in Nutrition, 13(2):621–632, 2022.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B. Kirpichev,

Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-

nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam

Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka,

Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:

symbolic computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992.

doi: 10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

J Donald Monk. Introduction to set theory. McGraw-Hill, 1969.

https://doi.org/10.7717/peerj-cs.103

BIBLIOGRAPHY 92

Arnold Neumaier. New techniques for the analysis of linear interval equations. Linear Algebra and

its Applications, 58:273–325, 1984.

Arnab Nilim and Laurent El Ghaoui. Robust solutions to markov decision problems with uncertain

transition matrices. Operations Research, 53(5):780–798, 2005.

Michael P Owen, Adam Panken, Robert Moss, Luis Alvarez, and Charles Leeper. ACAS Xu:

Integrated collision avoidance and detect and avoid capability for uas. In 2019 IEEE/AIAA 38th

Digital Avionics Systems Conference (DASC), pages 1–10. IEEE, 2019.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-

plexity. Courier Corporation, 2013.

Puja B Parikh, Lukman Hassan, Asem Qadeer, and Jignesh K Patel. Association between sex and

mortality in adults with in-hospital and out-of-hospital cardiac arrest: A systematic review and

meta-analysis. Resuscitation, 155:119–124, 2020.

Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical

programming, 96:293–320, 2003.

Pablo A Parrilo and Rekha R Thomas. Sum of squares: theory and applications. AMS short course,

Baltimore, MD, USA, 77, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,

high-performance deep learning library. Advances in neural information processing systems, 32,

2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011.

Laure Petrucci and Jaco van De Pol. Parameter synthesis algorithms for parametric interval markov

chains. In International Conference on Formal Techniques for Distributed Objects, Components,

and Systems, pages 121–140. Springer, 2018.

Frederic Portoraro. Automated Reasoning. In Edward N. Zalta and Uri Nodelman, editors, The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer

2025 edition, 2025.

Aaron Pulver and Ran Wei. Optimizing the spatial location of medical drones. Applied geography,

90:9–16, 2018.

Aaron Pulver, Ran Wei, and Clay Mann. Locating aed enabled medical drones to enhance cardiac

arrest response times. Prehospital Emergency Care, 20(3):378–389, 2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John

Wiley & Sons, 2014.

BIBLIOGRAPHY 93

Srikant Rangaraju, Diogo Haussen, Raul G Nogueira, Fadi Nahab, and Michael Frankel. Com-

parison of 3-month stroke disability and quality of life across modified rankin scale categories.

Interventional neurology, 6(1-2):36–41, 2017.

Marvin Rausand and Arnljot Hoyland. System reliability theory: models, statistical methods, and

applications, volume 396. John Wiley & Sons, 2003.

Johann WA Röper, Katharina Fischer, Mina Carolina Baumgarten, Karl Christian Thies, Klaus

Hahnenkamp, and Steffen Fleßa. Can drones save lives and money? an economic evaluation of

airborne delivery of automated external defibrillators. The European Journal of Health Economics,

24(7):1141–1150, 2023.

Jeffrey S Rosenthal. A first look at stochastic processes. World Scientific, 2019.

Luke Rudmik and Michael Drummond. Health economic evaluation: important principles and

methodology. The Laryngoscope, 123(6):1341–1347, 2013.

Paolo Ruffini. La teoria generale delle equazioni in cui é provato che la soluzione algebrica di

equazioni di grado maggiore di 4 é impossibile. 1799.

Comilla Sasson, Mary AM Rogers, Jason Dahl, and Arthur L Kellermann. Predictors of survival from

out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circulation: Cardiovascular

Quality and Outcomes, 3(1):63–81, 2010.

Sofia Schierbeck, Jacob Hollenberg, Anette Nord, Leif Svensson, Per Nordberg, Mattias Ringh, Sune

Forsberg, Peter Lundgren, Christer Axelsson, and Andreas Claesson. Automated external defib-

rillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. European

Heart Journal, 43(15):1478–1487, 2022a.

Sofia Schierbeck, Leif Svensson, and Andreas Claesson. Use of a drone-delivered automated external

defibrillator in an out-of-hospital cardiac arrest. New England Journal of Medicine, 386(20):

1953–1954, 2022b.

Sofia Schierbeck, Anette Nord, Leif Svensson, Mattias Ringh, Per Nordberg, Jacob Hollenberg, Peter

Lundgren, Fredrik Folke, Martin Jonsson, Sune Forsberg, et al. Drone delivery of automated ex-

ternal defibrillators compared with ambulance arrival in real-life suspected out-of-hospital cardiac

arrests: a prospective observational study in sweden. The Lancet Digital Health, 5(12):e862–e871,

2023.

Jacob T Schwartz and Micha Sharir. Algorithmic motion planning in robotics. In Algorithms and

Complexity, pages 391–430. Elsevier, 1990.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of stochastic

systems. In Computer Aided Verification: 17th International Conference, CAV 2005, Edinburgh,

Scotland, UK, July 6-10, 2005. Proceedings 17, pages 266–280. Springer, 2005.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking markov chains in the presence

of uncertainties. In Tools and Algorithms for the Construction and Analysis of Systems: 12th In-

ternational Conference, TACAS 2006, Held as Part of the Joint European Conferences on Theory

BIBLIOGRAPHY 94

and Practice of Software, ETAPS 2006, Vienna, Austria, March 25-April 2, 2006. Proceedings

12, pages 394–410. Springer, 2006.

Frank A Sonnenberg and J Robert Beck. Markov models in medical decision making: a practical

guide. Medical decision making, 13(4):322–338, 1993.

Monique A Starks, Audrey L Blewer, Edward Sharpe, Lee Van Vleet, Jennie Riley, Evan Arnold,

Joseph Slattery, Anjni Joiner, Daniel M Buckland, Jinny Ye, et al. Bystander performance during

simulated drone delivery of an aed for mock out-of-hospital cardiac arrest. Journal of the American

College of Cardiology, 75(11 Supplement 1):303–303, 2020.

Statistics Canada. 2021 census - attribute domain values. https://www12.statcan.gc.

ca/census-recensement/2021/geo/ref/domain-domaine/index2021-eng.cfm?lang=e&id=

POPCTRRAclass, 2022. Accessed October 9, 2023.

Statistics Canada. Dictionary, census of population, 2016 - population centre (popctr). https:

//www12.statcan.gc.ca/census-recensement/2016/ref/dict/geo049a-eng.cfm, 2023a. Ac-

cessed October 9, 2023.

Statistics Canada. Population centre boundary file. https://www150.statcan.gc.ca/n1/en/

catalogue/92-166-X, 2023b. Accessed October 9, 2023.

Statistics Canada. Census tract boundary files. https://www150.statcan.gc.ca/n1/en/

catalogue/92-168-X, 2023c. Accessed September 4, 2023.

William J Stewart. Introduction to the numerical solution of Markov chains. Princeton University

Press, 2021.

Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

Adam Strzeboński. Computation with semialgebraic sets represented by cylindrical algebraic formu-

las. In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation,

pages 61–68, 2010.

Christopher LF Sun, Lena Karlsson, Christian Torp-Pedersen, Laurie J Morrison, Fredrik Folke,

and Timothy CY Chan. Spatiotemporal aed optimization is generalizable. Resuscitation, 131:

101–107, 2018.

Alfred Tarski. A decision method for elementary algebra and geometry. In Quantifier elimination

and cylindrical algebraic decomposition, pages 24–84. Springer, 1951.

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Kishor Patel, and

Juan Pablo Vielma. The convex relaxation barrier, revisited: Tightened single-neuron relaxations

for neural network verification. Advances in Neural Information Processing Systems, 33:21675–

21686, 2020.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed

integer programming. arXiv preprint arXiv:1711.07356, 2017.

TreeAge Software. Treeage pro 2021, r1. http://www.treeage.com, 2021. TreeAge Software,

Williamstown, MA.

https://www12.statcan.gc.ca/census-recensement/2021/geo/ref/domain-domaine/index2021-eng.cfm?lang=e&id=POPCTRRAclass
https://www12.statcan.gc.ca/census-recensement/2021/geo/ref/domain-domaine/index2021-eng.cfm?lang=e&id=POPCTRRAclass
https://www12.statcan.gc.ca/census-recensement/2021/geo/ref/domain-domaine/index2021-eng.cfm?lang=e&id=POPCTRRAclass
https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/geo049a-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/geo049a-eng.cfm
https://www150.statcan.gc.ca/n1/en/catalogue/92-166-X
https://www150.statcan.gc.ca/n1/en/catalogue/92-166-X
https://www150.statcan.gc.ca/n1/en/catalogue/92-168-X
https://www150.statcan.gc.ca/n1/en/catalogue/92-168-X
http://www.treeage.com

BIBLIOGRAPHY 95

Unity Health Toronto. Rescu epistry. https://research.unityhealth.to/research-programs/

rescu/our-research/epistry/, 2023. Accessed September 23, 2023.

Rick A Vreman, Joost W Geenen, Saskia Knies, Aukje K Mantel-Teeuwisse, Hubert GM Leufkens,

and Wim G Goettsch. The application and implications of novel deterministic sensitivity analysis

methods. Pharmacoeconomics, 39:1–17, 2021.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.

Beta-CROWN: Efficient bound propagation with per-neuron split constraints for complete and

incomplete neural network verification. Advances in Neural Information Processing Systems, 34,

2021.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathe-

matics of Operations Research, 38(1):153–183, 2013.

Parke Wilde, Yue Huang, Stephen Sy, Shafika Abrahams-Gessel, Thiago Veiga Jardim, Robert

Paarlberg, Dariush Mozaffarian, Renata Micha, and Thomas Gaziano. Cost-effectiveness of a

us national sugar-sweetened beverage tax with a multistakeholder approach: who pays and who

benefits. American journal of public health, 109(2):276–284, 2019.

JT Lindsay Wilson, Asha Hareendran, Marie Grant, Tracey Baird, Ursula GR Schulz, Keith WMuir,

and Ian Bone. Improving the assessment of outcomes in stroke: use of a structured interview to

assign grades on the modified rankin scale. Stroke, 33(9):2243–2246, 2002.

Wolfram Research. CylindricalDecomposition. https://reference.wolfram.com/language/ref/

CylindricalDecomposition.html, 2020. Accessed: 03-September-2024.

Haoze Wu, Alex Ozdemir, Aleksandar Zeljic, Kyle Julian, Ahmed Irfan, Divya Gopinath, Sadjad

Fouladi, Guy Katz, Corina Pasareanu, and Clark Barrett. Parallelization techniques for verifying

neural networks. In # PLACEHOLDER PARENT METADATA VALUE#, volume 1, pages 128–

137. TU Wien Academic Press, 2020.

H̊akan LS Younes. Ymer: A statistical model checker. In International Conference on Computer

Aided Verification, pages 429–433. Springer, 2005.

Jessica K Zègre-Hemsey, Brittany Bogle, Christopher J Cunningham, Kyle Snyder, and Wayne Rosa-

mond. Delivery of automated external defibrillators (aed) by drones: implications for emergency

cardiac care. Current cardiovascular risk reports, 12:1–5, 2018.

Jessica K Zègre-Hemsey, Mary E Grewe, Anna M Johnson, Evan Arnold, Christopher J Cunning-

ham, Brittany M Bogle, and Wayne D Rosamond. Delivery of automated external defibrillators

via drones in simulated cardiac arrest: users’ experiences and the human-drone interaction. Re-

suscitation, 157:83–88, 2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.

General cutting planes for bound-propagation-based neural network verification. Advances in

Neural Information Processing Systems, 2022a.

https://research.unityhealth.to/research-programs/rescu/our-research/epistry/
https://research.unityhealth.to/research-programs/rescu/our-research/epistry/
https://reference.wolfram.com/language/ref/CylindricalDecomposition.html
https://reference.wolfram.com/language/ref/CylindricalDecomposition.html

BIBLIOGRAPHY 96

Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. A

branch and bound framework for stronger adversarial attacks of ReLU networks. In Proceedings of

the 39th International Conference on Machine Learning, volume 162, pages 26591–26604, 2022b.

Appendix A

Supplementary Material from

Chapter 4

A.1 Supplementary Tables

Table A.1: Summary statistics for final cohort of included records

Variable Summary

Total, count 22017
Age, mean (sd) 68.8 (16.9)
Male, count (%) 14017 (63.7)
Urban, count (%) 20653 (93.8)
Shockable rhythm, count (%) 4599 (20.9)
Witnessed, count (%) 8450 (38.4)
Time to ambulance, mean (sd) 381 (152)
Outcome, count (%)
Died before hospital 10326 (46.9)
Survived to hospital admission 11691 (53.1)
Died in hospital (mRS 6) 9836 (44.7)
Survived to hospital discharge 1855 (8.4)
mRS 0 536 (2.4)
mRS 1 146 (0.7)
mRS 2 75 (0.3)
mRS 3 48 (0.2)
mRS 4 19 (0.1)
mRS 5 25 (0.1)
Missing mRS 1006 (4.6)

97

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 98

Table A.2: Networks with the highest NMB, at a $150,000 threshold, for each number of drones

Number of drones Type of drone network Net monetary benefit, at $150,000 threshold,

per-person

5 Coverage, 6m 156201.62

10 Coverage, 6m 163469.71

15 Mean 169313.60

20 Mean 173138.11

25 Coverage, 4m 175265.39

30 Mean 178679.21

35 Mean 180260.67

40 Mean 182871.48

45 Mean 184180.39

50 Mean 185394.47

55 Mean 187001.12

60 Mean 188183.64

65 Mean 188668.47

70 Mean 189160.87

75 Mean 189721.68

80 Coverage, 3m 190348.81

85 Coverage, 3m 190967.96

90 Coverage, 3m 191201.01

95 Coverage, 3m 191588.56

100 Coverage, 3m 191866.86

105 Mean 192225.93

110 Mean 192705.23

115 Mean 192885.46

120 Coverage, 3m 193134.92

125 Coverage, 3m 193469.80

130 Coverage, 3m 193846.88

135 Coverage, 3m 194008.92

140 Coverage, 3m 194200.89

145 Coverage, 3m 194571.59

150 Mean 194624.41

155 Mean 194821.45

160 Coverage, 3m 195081.29

165 Mean 195283.01

170 Mean 195395.27

175 Mean 195524.56

180 Mean 195657.02

185 Mean 195794.90

190 Mean 195884.43

195 Mean 195929.08

200 Coverage, 3m 196135.43

205 Mean 196169.22

210 Coverage, 3m 196306.54

215 Mean 196385.34

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 99

220 Mean 196443.86

225 Mean 196589.95

230 Coverage, 3m 196968.31

235 Coverage, 3m 197375.83

240 Coverage, 3m 197380.19

245 Coverage, 3m 197394.44

250 Coverage, 3m 197387.61

255 Coverage, 3m 197388.66

260 Coverage, 3m 197393.21

265 Coverage, 3m 197399.20

270 Coverage, 3m 197436.18

275 Coverage, 3m 197498.43

280 Coverage, 3m 197505.88

285 Coverage, 2m 197551.72

290 Coverage, 3m 197649.78

295 Coverage, 2m 197692.02

300 Coverage, 2m 197731.54

305 Coverage, 3m 197710.96

310 Coverage, 3m 197846.51

315 Coverage, 2m 197902.04

320 Coverage, 3m 197823.85

325 Coverage, 3m 197792.26

330 Coverage, 3m 197757.80

335 Coverage, 3m 197751.40

340 90th %ile 198353.04

345 90th %ile 198408.97

350 90th %ile 198291.38

355 90th %ile 198401.69

360 90th %ile 198216.41

365 90th %ile 198525.88

370 90th %ile 198199.19

375 90th %ile 198519.74

380 90th %ile 198605.63

385 90th %ile 198393.90

390 90th %ile 198494.31

395 90th %ile 198600.24

400 90th %ile 198203.76

405 90th %ile 198492.44

410 90th %ile 198422.19

415 90th %ile 198502.41

420 90th %ile 198353.04

425 90th %ile 198589.43

430 90th %ile 198523.58

435 90th %ile 198452.64

440 90th %ile 198490.75

445 Mean 198480.16

450 Mean 198451.25

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 100

455 90th %ile 198512.38

460 90th %ile 198483.71

465 Mean 198488.48

470 Mean 198489.02

475 Coverage, 7m 198275.42

480 Coverage, 6m 198357.43

485 Mean, 90th %ile

(equivalent)

198245.63

490 Mean, 90th %ile

(equivalent)

198284.65

495 Mean, 90th %ile

(equivalent)

198275.67

500 Coverage, 2m 198268.19

505 Coverage, 2m 198351.81

510 Coverage, 2m 198324.17

515 Coverage, 2m 198290.76

520 Coverage, 2m 198287.09

525 Coverage, 2m 198254.23

530 Coverage, 3m 198227.93

535 Coverage, 1m 198213.30

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 101

T
ab

le
A
.3
:
P
at
ie
n
t
ou

tc
om

es
,
ex
p
re
ss
ed

as
ra
te
s
(%

),
fo
r
sh
o
ck
a
b
le

a
n
d
/
o
r
w
it
n
es
se
d
p
o
p
u
la
ti
o
n
s,

fo
r
ea
ch

o
f
th
e
n
et
w
o
rk
s
o
n
th
e
effi

ci
en
t
fr
o
n
ti
er
.

P
at
ie
n
ts

ar
e
gr
ou

p
ed

b
y
h
is
to
ri
ca
l
st
at
u
s.

A
:
su
rv
iv
o
rs

to
h
o
sp
it
a
l
a
d
m
is
si
o
n
,
D
:
su
rv
iv
o
rs

to
h
o
sp
it
a
l
d
is
ch
a
rg
e,

F
:
n
eu
ro
lo
g
ic
a
ll
y
fa
vo
ra
b
le

st
a
tu
s

D
ro

n
e
n
e
tw

o
rk

W
h
o
le

p
o
p
u
la
ti
o
n

(n
=
2
2
0
1
7
)

W
it
n
e
ss
e
d

(n
=
8
4
5
0
)

S
h
o
ck

a
b
le

(n
=
4
5
9
9
)

S
h
o
ck

a
b
le

a
n
d

w
it
n
e
ss
e
d

(n
=
2
8
9
1
)

N
o
t
sh

o
ck

a
b
le

n
o
r

w
it
n
e
ss
e
d

(n
=
1
1
8
5
9
)

A
D

F
A

D
F

A
D

F
A

D
F

A
D

F

S
ta
n
d
ar
d
ca
re

53
.1
0

8.
43

7
.9
4

6
4
.2
1

1
2
.7
9

1
2
.0
1

8
3
.0
6

2
7
.7
2

2
6
.3
3

8
4
.8
5

2
8
.7
8

2
7
.2
2

4
1
.3
0

2
.7
9

2
.6
1

C
ov
er
ag
e,

5m
,
20

d
ro
n
es

58
.6
3

10
.2
8

9
.5
3

7
0
.0
9

1
5
.9
7

1
4
.8
2

8
6
.3
0

3
1
.5
1

2
9
.8
6

8
7
.9
5

3
3
.2
5

3
1
.4
4

4
6
.8
9

3
.5
9

3
.2
1

C
ov
er
ag
e,

4m
,
50

d
ro
n
es

60
.7
6

11
.0
9

1
0
.2
1

7
2
.0
6

1
7
.3
3

1
6
.0
0

8
7
.4
5

3
3
.2
0

3
1
.4
0

8
9
.0
3

3
5
.2
1

3
3
.2
3

4
9
.2
6

3
.9
6

3
.4
8

C
ov
er
ag
e,

3m
,
85

d
ro
n
es

61
.7
5

11
.5
5

1
0
.5
7

7
2
.9
7

1
8
.1
1

1
6
.6
4

8
8
.0
4

3
4
.1
3

3
2
.1
8

8
9
.6
1

3
6
.3
3

3
4
.1
8

5
0
.3
4

4
.1
6

3
.6
2

C
ov
er
ag
e,

3m
,
95

d
ro
n
es

61
.8
3

11
.5
9

1
0
.6
1

7
3
.0
6

1
8
.1
8

1
6
.7
1

8
8
.0
7

3
4
.2
3

3
2
.2
8

8
9
.6
6

3
6
.4
5

3
4
.3
0

5
0
.4
3

4
.1
8

3
.6
4

C
ov
er
ag
e,

3m
,
11
0
d
ro
n
es

61
.9
6

11
.6
5

1
0
.6
6

7
3
.1
9

1
8
.2
8

1
6
.7
9

8
8
.1
1

3
4
.3
2

3
2
.3
5

8
9
.7
2

3
6
.5
4

3
4
.3
7

5
0
.5
8

4
.2
1

3
.6
6

C
ov
er
ag
e,

3m
,
13
5
d
ro
n
es

62
.2
5

11
.7
8

1
0
.7
5

7
3
.4
7

1
8
.4
8

1
6
.9
4

8
8
.3
1

3
4
.6
0

3
2
.5
7

8
9
.9
2

3
6
.8
4

3
4
.6
2

5
0
.8
9

4
.2
7

3
.7
0

C
ov
er
ag
e,

3m
,
14
5
d
ro
n
es

62
.3
3

11
.8
3

1
0
.7
8

7
3
.5
5

1
8
.5
6

1
7
.0
0

8
8
.3
7

3
4
.6
8

3
2
.6
3

8
9
.9
9

3
6
.9
3

3
4
.6
9

5
0
.9
8

4
.2
9

3
.7
1

C
ov
er
ag
e,

3m
,
16
0
d
ro
n
es

62
.4
0

11
.8
7

1
0
.8
2

7
3
.6
2

1
8
.6
2

1
7
.0
6

8
8
.4
1

3
4
.7
9

3
2
.7
3

9
0
.0
2

3
7
.0
8

3
4
.8
1

5
1
.0
6

4
.3
1

3
.7
2

C
ov
er
ag
e,

3m
,
18
5
d
ro
n
es

62
.5
3

11
.9
3

1
0
.8
6

7
3
.7
6

1
8
.7
3

1
7
.1
5

8
8
.5
2

3
4
.9
3

3
2
.8
4

9
0
.1
2

3
7
.2
4

3
4
.9
4

5
1
.1
8

4
.3
3

3
.7
4

C
ov
er
ag
e,

3m
,
23
5
d
ro
n
es

62
.8
6

12
.0
7

1
0
.9
7

7
3
.9
3

1
8
.9
1

1
7
.2
8

8
8
.6
2

3
5
.2
0

3
3
.0
5

9
0
.1
5

3
7
.4
7

3
5
.1
3

5
1
.6
3

4
.4
2

3
.8
0

90
th

%
il
e,

34
5
d
ro
n
es

63
.0
6

12
.2
0

1
1
.0
6

7
4
.0
9

1
9
.1
0

1
7
.4
0

8
8
.7
7

3
5
.4
9

3
3
.2
7

9
0
.2
7

3
7
.7
6

3
5
.3
3

5
1
.8
7

4
.4
8

3
.8
4

90
th

%
il
e,

36
5
d
ro
n
es

63
.0
9

12
.2
2

1
1
.0
7

7
4
.1
1

1
9
.1
3

1
7
.4
2

8
8
.8
0

3
5
.5
2

3
3
.2
9

9
0
.2
9

3
7
.8
0

3
5
.3
7

5
1
.9
0

4
.5
0

3
.8
5

90
th

%
il
e,

38
0
d
ro
n
es

63
.1
1

12
.2
3

1
1
.0
8

7
4
.1
2

1
9
.1
3

1
7
.4
4

8
8
.8
2

3
5
.5
4

3
3
.3
1

9
0
.2
9

3
7
.8
0

3
5
.3
6

5
1
.9
3

4
.5
0

3
.8
5

90
th

%
il
e,

42
5
d
ro
n
es

63
.1
5

12
.2
5

1
1
.1
0

7
4
.1
4

1
9
.1
7

1
7
.4
6

8
8
.8
2

3
5
.5
9

3
3
.3
5

9
0
.3
1

3
7
.8
6

3
5
.4
1

5
1
.9
9

4
.5
1

3
.8
6

M
ea
n
,
47
0
d
ro
n
es

63
.1
8

12
.2
7

1
1
.1
1

7
4
.1
8

1
9
.2
0

1
7
.4
8

8
8
.8
6

3
5
.6
3

3
3
.3
8

9
0
.3
6

3
7
.9
1

3
5
.4
6

5
2
.0
2

4
.5
2

3
.8
6

C
ov
er
ag
e,

2m
,
50
5
d
ro
n
es

63
.1
9

12
.2
8

1
1
.1
1

7
4
.1
8

1
9
.2
1

1
7
.4
9

8
8
.8
8

3
5
.6
5

3
3
.3
9

9
0
.3
7

3
7
.9
3

3
5
.4
7

5
2
.0
3

4
.5
2

3
.8
6

C
ov
er
ag
e,

2m
,
52
0
d
ro
n
es

63
.2
0

12
.2
8

1
1
.1
1

7
4
.1
8

1
9
.2
2

1
7
.5
0

8
8
.8
8

3
5
.6
5

3
3
.4
0

9
0
.3
7

3
7
.9
3

3
5
.4
8

5
2
.0
4

4
.5
2

3
.8
7

53
8
d
ro
n
es

63
.2
0

12
.2
8

1
1
.1
2

7
4
.1
8

1
9
.2
2

1
7
.5
0

8
8
.8
8

3
5
.6
6

3
3
.4
0

9
0
.3
7

3
7
.9
4

3
5
.4
8

5
2
.0
4

4
.5
3

3
.8
7

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 102

Table A.4: Summary of Prediction Models

Prediction Model Type Covariates

Shockable rhythm Binary logistic Age, sex, witnessed, time to ambulance
Survival to hospital Binary logistic Age, sex, shockable, witnessed, time to

ambulance
mRS at discharge XGBoost32 (multiclass), hyperparame-

ters: max depth = 3, eta = 0.1, gamma
= 0.3, rounds = 50, colsample by tree
= 0.8, min child weight = 1, subsample
= 0.8, threads = 2

Age, sex, shockable, witnessed, time to
ambulance

Table A.5: Comparison of important covariates between patients who survived to discharge and had
an mRS versus those who survived but had a missing mRS. Continuous covariates were compared
with a two-sample t-test, while proportions were compared with a two-proportion z-test.

Covariate Missing (n=1006) Not missing (n=849) p-value

Age, mean (sd) 60.9 (16.3) 59.3 (15.0) 0.03
Male, n (%) 719 (71.5) 655 (77.1) 0.006
Urban, n (%) 936 (93.0) 791 (93.2) 0.99
Shockable, n (%) 627 (62.3) 648 (76.3) <0.001
Witnessed, n (%) 499 (49.6) 582 (68.6) <0.001
Time to ambulance, mean (sd) 376 (165) 355 (134) 0.003

Table A.6: Results of imputation of missing mRS values.

mRS Counts of predictions for
n=1006 with missing mRS

Total counts for whole n=22017
after imputation

0 928 1464
1 63 209
2 0 75
3 15 63
4 0 19
5 0 25

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 103

A.2 Supplementary Figures

Figure A.1: Inclusion and exclusion diagram of dataset

Figure A.2: Net monetary benefit of all networks at thresholds of $50k, $100k, and $150k

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 104

Figure A.3: Subgroup analysis of net monetary benefit at $150k threshold, for shockable and/or
witnessed populations, for drone networks on efficient frontier. Solid lines indicates standard care.
Patients are grouped by historical status. Note that per-person normalizes the NMB by dividing by
the number of people in that subgroup, in order to make values comparable between subgroups

Figure A.4: Tornado plots showing sensitivity of number of survivors to hospital admission to model
parameters, for all drone networks on the efficient frontier. Solid line indicates value at the original
parameter values. Drone network is labeled as: type of drone network / # drones

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 105

Figure A.5: Tornado plots showing sensitivity of number of survivors to hospital discharge to model
parameters, for all drone networks on the efficient frontier. Solid line indicates count at the original
parameter values. Drone network is labeled as: type of drone network / # drones

Figure A.6: Tornado plots showing sensitivity of number of survivors with neurologically favorable
outcome (mRS 0-2) to model parameters, for all drone networks on the efficient frontier. Solid line
indicates count at the original parameter values. Drone network is labeled as: type of drone network
/ # drones

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 106

Figure A.7: Tornado plots showing sensitivity of net monetary benefit, at $150k threshold, to
all model parameters, for all drone networks on the Pareto frontier. Solid line indicates NMB
at the original parameter values. Drone network is labeled as: type of drone network / # drones.
Parameters, listed on the x-axis, are ordered, for each drone network, in decreasing order of sensitivity

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 107

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 108

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 109

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 110

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 111

Figure A.8: Net monetary benefits of all networks, at thresholds of $50k, $100k, $150k (labels across
top), for the scenarios where drone operational costs are 1x (i.e., standard), 2x, and 5x (labels on
right-hand side) of the values reported in Table 1

Figure A.9: Breakeven multiplier of the drone cost of each drone network, at thresholds of $50k,
$100k, $150k. Values represent how much drone costs would need to be multiplied so that the drone
network has the same NMB as standard care

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 112

Figure A.10: Net monetary benefits of all networks, at $150k threshold, when randomly excluding
10%, 25%, 50%, and 75% of patients from being dispatched a drone. 100 draws were performed for
each exclusion percentage, and metrics averaged across draws

APPENDIX A. SUPPLEMENTARY MATERIAL FROM CHAPTER 4 113

Figure A.11: Net monetary benefits of all networks, at thresholds of $50k, $100k, $150k (labels
across top), when excluding the n=1006 patients who survived hospital discharge but had a missing
mRS

Figure A.12: Net monetary benefits of all networks, at thresholds of $50k, $100k, $150k (labels across
top), when scaling down all utility values to account for Canadian population baseline utilities

	Introduction
	Motivation
	Summary of Contributions
	Thesis Organization
	Related Work
	Uncertainty in Markov Processes
	Cost-Effectiveness Analysis

	Mathematical Setup

	Exact Sensitivity Analysis of Markov Reward Processes
	Introduction
	Related Work
	Cylindrical Algebraic Decomposition

	Semialgebraic Representations of Markov Reward Processes
	Cylindrical Algebraic Decomposition
	Background on Hong Projection Operator
	Technical Lemmas About Reducta and Principal Subresultant Coefficients
	The CAD Algorithm
	A Special Class of Polynomial System

	Application to Markov Reward Processes
	Geometry of Two-Way Sensitivity Analysis

	Software: markovag
	Synthetic Case Study

	Conclusion

	Formal Verification of Markov Processes with Learned Parameters
	Introduction
	Related Work
	Problem Formulation
	Embedding ML Models

	Solving the Optimization Problem
	Tightening Bounds on bold0mu mumu vv2005/06/28 ver: 1.3 subfig packagevvvv
	Solving the Final Optimization Problem

	Extensions
	Reachability, Hitting time, and Feasibility
	Special Cases

	Software: markovml
	Supported Models
	Using markovml

	Numerical Experiments
	Setup
	Results

	Discussion and Conclusion

	Cost-Effectiveness of Drone-Delivered Automated External Defibrillators for Cardiac Arrest
	Introduction
	Summary of Methods
	Data Source and Study Setting
	Study Population
	Drone Network Optimization
	Drone Specifications
	Decision Model
	Outcomes
	Subgroup and Sensitivity analyses

	Detailed Methods
	Data Summary and Processing
	Drone Networks
	Prediction Models
	Cost-Effectiveness Model Parameters

	Results
	Subgroup Analyses
	Sensitivity Analysis

	Discussion of Main Results
	Re-Analysis with our Algorithms
	Sensitivity Analysis
	Subgroup Analysis

	Conclusion

	Conclusion
	Supplementary Material from Chapter 4
	Supplementary Tables
	Supplementary Figures

